1.Mitochondrial Quality Control in the Heart: New Drug Targets for Cardiovascular Disease
Chang Myung OH ; Dongryeol RYU ; Sungsoo CHO ; Yangsoo JANG
Korean Circulation Journal 2020;50(5):395-405
Despite considerable efforts to prevent and treat cardiovascular disease (CVD), it has become the leading cause of death worldwide. Cardiac mitochondria are crucial cell organelles responsible for creating energy-rich ATP and mitochondrial dysfunction is the root cause for developing heart failure. Therefore, maintenance of mitochondrial quality control (MQC) is an essential process for cardiovascular homeostasis and cardiac health. In this review, we describe the major mechanisms of MQC system, such as mitochondrial unfolded protein response and mitophagy. Moreover, we describe the results of MQC failure in cardiac mitochondria. Furthermore, we discuss the prospects of 2 drug candidates, urolithin A and spermidine, for restoring mitochondrial homeostasis to treat CVD.
Adenosine Triphosphate
;
Cardiovascular Diseases
;
Cause of Death
;
Heart Failure
;
Heart
;
Homeostasis
;
Mitochondria
;
Mitochondrial Degradation
;
Organelles
;
Quality Control
;
Spermidine
;
Unfolded Protein Response
2.Exogenous spermidine ameliorates tubular necrosis during cisplatin nephrotoxicity.
Anatomy & Cell Biology 2018;51(3):189-199
The hallmark of cisplatin-induced acute kidney injury is the necrotic cell death in the kidney proximal tubules. However, an effective approach to limit cisplatin nephrotoxicity remains unknown. Spermidine is a polyamine that protects against oxidative stress and necrosis in aged yeasts, and the present study found that exogenous spermidine markedly attenuated tubular necrosis and kidney dysfunction, but not apoptosis, during cisplatin nephrotoxicity. In addition, exogenous spermidine potently inhibited oxidative/nitrative DNA damage, poly(ADP-ribose) polymerase 1 (PARP1) activation and ATP depletion after cisplatin injection. Conversely, inhibition of ornithine decarboxylase (ODC) via siRNA transfection in vivo significantly increased DNA damage, PARP1 activation and ATP depletion, resulting in acceleration of tubular necrosis and kidney dysfunction. Finally, exogenous spermidine removed severe cisplatin injury induced by ODC inhibition. In conclusion, these data suggest that spermidine protects kidneys against cisplatin injury through DNA damage and tubular necrosis, and this finding provides a novel target to prevent acute kidney injury including nephrotoxicity.
Acceleration
;
Acute Kidney Injury
;
Adenosine Triphosphate
;
Apoptosis
;
Cell Death
;
Cisplatin*
;
DNA Damage
;
Kidney
;
Lipid Peroxidation
;
Necrosis*
;
Ornithine Decarboxylase
;
Oxidative Stress
;
Poly(ADP-ribose) Polymerases
;
RNA, Small Interfering
;
Spermidine*
;
Transfection
;
Yeasts
3.Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish.
Jin Woo JEONG ; Hee Jae CHA ; Min Ho HAN ; Su Jung HWANG ; Dae Sung LEE ; Jong Su YOO ; Il Whan CHOI ; Suhkmann KIM ; Heui Soo KIM ; Gi Young KIM ; Su Hyun HONG ; Cheol PARK ; Hyo Jong LEE ; Yung Hyun CHOI
Biomolecules & Therapeutics 2018;26(2):146-156
Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2), and cytokines including tumor necrosis factor-α and interleukin-1β in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of NF-κB p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.
Antioxidants
;
Cytokines
;
Dinoprostone
;
Genes, Regulator
;
Inflammation*
;
Larva
;
Macrophages*
;
Necrosis
;
Neutrophils
;
Nitric Oxide
;
Oxidative Stress*
;
Reactive Oxygen Species
;
Spermidine*
;
Zebrafish*
4.Spermidine is protective against kidney ischemia and reperfusion injury through inhibiting DNA nitration and PARP1 activation.
Anatomy & Cell Biology 2017;50(3):200-206
Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative and nitrative stresses; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated histological damage and kidney dysfunction during IRI. In addition, exogenous spermidine potently inhibited poly(ADP-ribose) polymerase 1 (PARP1) activation and DNA nitrative/oxidative stress following IRI. Conversely, inhibition of ornithine decarboxylase (ODC) via siRNA transfection in vivo significantly enhanced DNA nitration, PARP1 activation, and functional damage during IRI. Finally, in ODC knockdown kidneys, PARP1 inhibition attenuated histological and functional damage induced by IRI, but not DNA nitrative stress. In conclusion, these data suggest that spermidine protects kidneys against IRI through blocking DNA nitration and PARP1 activation and this finding provides a novel target for prevention of acute kidney injury including IRI.
Acute Kidney Injury
;
Aging
;
DNA*
;
Ischemia*
;
Kidney*
;
Mortality
;
Necrosis
;
Ornithine Decarboxylase
;
Oxidative Stress
;
Poly(ADP-ribose) Polymerases
;
Reperfusion Injury*
;
Reperfusion*
;
RNA, Small Interfering
;
Spermidine*
;
Transfection
;
Yeasts
5.Identification of Wild Yeast Strains and Analysis of Their beta-Glucan and Glutathione Levels for Use in Makgeolli Brewing.
Sun Hee KANG ; Hye Ryun KIM ; Jae Ho KIM ; Byung Hak AHN ; Tae Wan KIM ; Jang Eun LEE
Mycobiology 2014;42(4):361-367
Makgeolli, also known as Takju, is a non-filtered traditional Korean alcoholic beverage that contains various floating matter, including yeast cells, which contributes to its high physiological functionality. In the present study, we assessed the levels of beta-glucan and glutathione in various yeast strains isolated from traditional Korean Nuruk and selected a beta-glucan- and glutathione-rich yeast strain to add value to Makgeolli by enhancing its physiological functionality through increased levels of these compounds. Yeast beta-glucan levels ranged from 6.26% to 32.69% (dry basis) and were strongly species-dependent. Dried Saccharomyces cerevisiae isolated from Nuruk contained 25.53 microg/mg glutathione, 0.70 microg/mg oxidized glutathione, and 11.69 microg/g and 47.85 microg/g spermidine and L-ornithine monohydrochloride, respectively. To produce functional Makgeolli, a beta-glucan- and glutathione-rich yeast strain was selected in a screening analysis. Makgeolli fermented with the selected yeast strain contained higher beta-glucan and glutathione levels than commercial Makgeolli. Using the selected yeast strain to produce Makgeolli with high beta-glucan and glutathione content may enable the production of functional Makgeolli.
Alcoholic Beverages
;
Glutathione Disulfide
;
Glutathione*
;
Mass Screening
;
Saccharomyces cerevisiae
;
Spermidine
;
Yeasts*
6.Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases.
Myung Hee PARK ; Kazuei IGARASHI
Biomolecules & Therapeutics 2013;21(1):1-9
Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.
Acrolein
;
Animals
;
Biomarkers
;
Brain Infarction
;
C-Reactive Protein
;
Diacetyl
;
DNA
;
Early Detection of Cancer
;
Eukaryotic Cells
;
Humans*
;
Hydrogen Peroxide
;
Inflammation
;
Interleukin-6
;
Lysine
;
Metabolism
;
Mice
;
Oxidative Stress
;
Oxidoreductases
;
Phospholipids
;
Plasma
;
Polyamines*
;
Putrescine
;
Renal Insufficiency
;
RNA
;
Sensitivity and Specificity
;
Spermidine
;
Spermine
;
Stroke
7.Dynamin-mediated endocytic process contributes to neuronal nitric oxide synthase-mediated regulation of cardiac contraction.
Kai LIU ; Jun LI ; Yi-Han CHEN
Acta Physiologica Sinica 2011;63(3):211-218
Nitric oxide synthases (NOSs) play complex roles in the regulation of cardiac excitation contraction coupling under basal and stressed conditions. Herein, using the recording approach for intracellular calcium transient and synchronous myocyte contraction, the potential mechanism for NOSs-mediated cardiomyocyte contraction was explored. We found that selective inhibition of neuronal NOS (nNOS) with 100 µmol/L spermidine markedly enhanced the cardiomyocyte twitch [control: (10.5 ± 0.21)%; nNOS inhibition: (12.4 ± 0.18)%] and calcium transient [control: (0.27 ± 0.03)%; nNOS inhibition: (0.42 ± 0.01)%], but slowed the relengthening of twitch [control: (25.2 ± 1.3) ms; nNOS inhibition: (53 ± 2.8) ms] and the calcium transient decay [control: (129 ± 4.3) ms; nNOS inhibition: (176 ± 7.1) ms], which was similar to that by dynamin inhibition with 30 µmol/L dynasore. The nNOS inhibition- or dynasore-mediated effects could be rescued by an NO donor, S-Nitroso-N-acetylpenicillamine (SNAP). Our data suggest that the selective nNOS-mediated regulation of cardiac contractile activity may partly involve the dynamin-mediated endocytic mechanism.
Animals
;
Biological Transport
;
Calcium Signaling
;
Dynamins
;
antagonists & inhibitors
;
physiology
;
Endocytosis
;
physiology
;
Female
;
Hydrazones
;
pharmacology
;
Male
;
Myocardial Contraction
;
physiology
;
Nitric Oxide Synthase Type I
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Spermidine
;
pharmacology
;
Transport Vesicles
;
physiology
8.Effect of exogenous Ca2+, ALA, SA and Spd on seed germination and physiological characteristics of Perilla frutescens seedlings under NaCl stress.
Chunping ZHANG ; Ping HE ; Zeli YU ; Dandan DU ; Pinxiang WEI
China Journal of Chinese Materia Medica 2010;35(24):3260-3265
OBJECTIVETo find a method for improving the salt resistance of seeds and seedlings for Perilla Frutescens under NaCl stress, seed germination and physiological characteristics of P. frutescens seedlings were studied.
METHODSeveral physiological indexes of P. frutescens seeds treated with different concentrations of Ca2+, 5-aminolevulinic acid (ALA), salicylic acid (SA) and spermidine (Spd) under NaCl stress like the germination vigor, germination rate, germination index and vigor index were measured. And other indexes like the biomass of the seedlings, the content of malondialdehyde (MDA) in leaves, the activities of superoxide (SOD), peroxidase (POD) and catalase (CAT) were also measured.
RESULTThe germination of P. frutescens seeds under NaCl stress (100 mmol x L(-1)) was inhibited obviously. But after the treatment with Ca2+, ALA , SA and Spd, all germination indexes were increased. Ca2+ (10 mmol x L(-1)), ALA (100 mg x L(-1)), SA (50 mg x L(-1)) and Spd (0.25 mmol x L(-1)) could obviously alleviate the damage of salt stress to the seeds of P. frutescens. ALA (100 mg x L(-1)) significantly increased all indexes. The germination vigor was 65.3%, the germination rate was 89.7%, the germination index and vigor index were 15.2 and 0.1238, respectively. All treatments decreased the content of MDA in leaves. The activities of three enzymes including SOD, POD and CAT were all increased. ALA (100 mg x L(-1)) had the enzymes activity reach the maximum with 0.72, 6, 82 and 5.64 U x mg(-1), respectively.
CONCLUSIONCa2+ ALA , SA and Spd with appropriate concentration could significantly alleviate the damages to the seeds and seedlings of P. frutescens under NaCl stress and promote the salt resistance of the seeds and seedlings.
Aminolevulinic Acid ; pharmacology ; Calcium ; pharmacology ; Catalase ; metabolism ; Dose-Response Relationship, Drug ; Germination ; drug effects ; Malondialdehyde ; metabolism ; Perilla frutescens ; drug effects ; enzymology ; metabolism ; physiology ; Peroxidase ; metabolism ; Salicylic Acid ; pharmacology ; Seedlings ; drug effects ; enzymology ; metabolism ; physiology ; Sodium Chloride ; pharmacology ; Spermidine ; pharmacology ; Stress, Physiological ; drug effects ; Superoxide Dismutase ; metabolism
9.Proteomic Analysis of Hepatic Ischemia and Reperfusion Injury in Mice.
Eun Hae CHO ; Jin Hee SUNG ; Phil Ok KOH
Laboratory Animal Research 2010;26(1):69-74
Hepatic ischemia/reperfusion (I/R) injury is an inevitable consequence during liver surgery. I/R injury induces serious hepatic dysfunction and failure. In this study, we identified proteins that were differentially expressed between sham and I/R injured livers. Animals were subjected to hepatic ischemia for 1 hr and were sacrificed at 3hr after reperfusion. Serum ALT and AST levels were significantly increased in I/R-operated animals compared to those of sham-operated animals. Ischemic hepatic lobes of I/R-operated animals showed the hepatic lesion with unclear condensation and sinusoidal congestion. Proteins from hepatic tissue were separated using two dimensional gel electrophosresis. Protein spots with a greater than 2.5-fold change in intensity were identified by mass spectrometry. Among these proteins, glutaredoxin-3, peroxiredoxin-3, glyoxalase I, spermidine synthase, dynamin-1-like protein, annexin A4, eukaryotic initiation factor 3, eukaryotic initiation factor 4A-I, 26S proteasome, proteasome alpha 1, and proteasome beta 4 levels were significantly decreased in I/R-operated animals compared to those of sham-operated animals. These proteins are related to protein synthesis, cellular growth and stabilization, anti-oxidant action. Moreover, Western blot analysis confirmed that dynamin-1-like protein levels were decreased in I/R-operated animals. Our results suggest that hepatic I/R induces the hepatic cells damage by regulation of several proteins.
Animals
;
Annexin A4
;
Blotting, Western
;
Estrogens, Conjugated (USP)
;
Eukaryotic Initiation Factor-3
;
Hepatocytes
;
Ischemia
;
Lactoylglutathione Lyase
;
Liver
;
Mass Spectrometry
;
Mice
;
Peptide Initiation Factors
;
Proteasome Endopeptidase Complex
;
Proteins
;
Reperfusion
;
Reperfusion Injury
;
Salicylamides
;
Spermidine Synthase
10.Apoptosis induced by NNAMB, a novel polyamine conjugate, in human erythroleukemia K562 cells and its mechanism.
Song-Qiang XIE ; Ying-Liang WU ; Guang-Chao LIU ; Peng-Fei CHENG ; Min-Wei WANG ; Yuan-Fang MA ; Jin ZHAO ; Chao-Jie WANG
Chinese Journal of Oncology 2008;30(7):490-493
OBJECTIVETo investigate the apoptosis-inducing effects of NNAMB, a novel polyamine conjugate, in erythroleukemia K562 cells and its molecular mechanism.
METHODSCell viability was assessed by MTT assay and trypan blue dye exclusion method. The cell morphology was observed by fluorescence microscopy. The cell cycle distribution, apoptosis and mitochondrial membrane potential were measured by flow cytometry. The expression of caspase-3, -8, -9, cytochrome c in the K562 cells was detected by Western blot.
RESULTSNNAMB inhibited the proliferation of K562 cells. The cells treated with NNAMB showed a typical apoptotic morphology, Sub-G1 peak and loss of mitochondrial membrane potential. Western blot assay showed that NNAMB increased the expression of caspase-3, -9, cytochrome c but not caspase-8 in a dose-and time-dependent manner.
CONCLUSIONNNAMB induces apoptosis via mitochondrial pathway in K562 cells.
Anthracenes ; pharmacology ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Caspase 8 ; metabolism ; Caspase 9 ; metabolism ; Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Cytochromes c ; metabolism ; Humans ; K562 Cells ; Membrane Potential, Mitochondrial ; drug effects ; Polyamines ; pharmacology ; Spermidine ; analogs & derivatives ; pharmacology

Result Analysis
Print
Save
E-mail