1.A new norsesquiterpenoid from Arctium lappa leaves.
Jiang-Nan LYU ; Ling-Xia ZHANG ; Qing-Yu YANG ; Na HUANG ; Zhi-Min WANG ; Li-Ping DAI
China Journal of Chinese Materia Medica 2023;48(18):5024-5031
Chemical constituents were isolated and purified from ethyl acetate fraction of Arctium lappa leaves by silica gel, ODS, MCI, and Sephadex LH-20 column chromatography. Their structures were identified with multiple spectroscopical methods including NMR, MS, IR, UV, and X-ray diffraction combined with literature data. Twenty compounds(1-20) were identified and their structures were determined as arctanol(1), citroside A(2), melitensin 15-O-β-D-glucoside(3), 11β,13-dihydroonopordopicrin(4), 11β,13-dihydrosalonitenolide(5), 8α-hydroxy-β-eudesmol(6), syringin(7), dihydrosyringin(8), 3,4,3',4'-tetrahydroxy-δ-truxinate(9),(+)-pinoresinol(10), phillygenin(11), syringaresinol(12), kaeperferol(13), quercetin(14), luteolin(15), hyperin(16), 4,5-O-dicaffeoylquinic acid(17), 1H-indole-3-carboxaldehyde(18), benzyl-β-D-glucopyranoside(19), and N-(2'-phenylethyl) isobutyramide(20). Among them, compound 1 is a new norsesquiterpenoid, and compounds 2-5, 7-8, and 18-20 are isolated from this plant for the first time.
Arctium/chemistry*
;
Magnetic Resonance Spectroscopy
;
Luteolin/analysis*
;
Plant Leaves/chemistry*
2.Three new diterpenoids from whole herb of Carpesium cernuum.
Shu-Hui FENG ; Wei-Qing ZHANG ; Wei LIANG ; Chen YAN
China Journal of Chinese Materia Medica 2023;48(19):5244-5249
The study investigated the chemical constituents from the whole herb of Carpesium cernuum. Three new diterpenoids were isolated from the whole herb of C. cernuum by column chromatography on silica gel, Sephadex LH-20, and semi-preparative HPLC. Their structures were identified by MS, NMR and other spectral techniques. The isolates were identified as(5Z)-2-oxo-2, 10, 14-trimethylhexadeca-5, 13-diene-11α, 18-diol(1),(2E, 10E)-7-[(acetyloxy)methyl]-3, 11, 15-trimethylhexadeca-2, 10, 14-triene-1, 12α-diol(2),(2E, 6Z)-3, 11, 15-trimethylhexadeca-2, 6, 14-triene-1, 12α, 19-triol(3), respectively. The cytotoxic activity of compounds 1-3 were investigated with DU-145, MCF-7, and A549 cells by MTT. The results showed that compound 1 and 3 had certain inhibitory effects on MCF-7 cells, with the inhibition rates of 45.06% and 29.40%, respectively.
Humans
;
Asteraceae/chemistry*
;
MCF-7 Cells
;
Magnetic Resonance Spectroscopy
;
Chromatography, High Pressure Liquid
;
A549 Cells
3.A new xanthone from hulls of Garcinia mangostana and its cytotoxic activity.
Feng-Ning ZHAO ; Qi NIU ; Die XIAO ; Hao-Nan XU ; Hao-Xin WANG ; Rong-Lu BI ; Hong-Ping HE ; Zhi-Yong JIANG
China Journal of Chinese Materia Medica 2023;48(21):5817-5821
Eight compounds were isolated from ethyl acetate fraction of 80% ethanol extract of the hulls of Garcinia mangostana by silica gel, Sephadex LH-20 column chromatography, as well as prep-HPLC methods. By HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the eight compounds were identified as 16-en mangostenone E(1), α-mangostin(2), 1,7-dihydroxy-2-(3-methy-lbut-2-enyl)-3-methoxyxanthone(3), cratoxyxanthone(4), 2,6-dimethoxy-para-benzoquinone(5), methyl orselinate(6), ficusol(7), and 4-(4-carboxy-2-methoxyphenoxy)-3,5-dimethoxybenzoic acid(8). Compound 1 was a new xanthone, and compound 4 was a xanthone dimer, compound 5 was a naphthoquinone. All compounds were isolated from this plant for the first time except compounds 2 and 3. Cytotoxic bioassay suggested that compounds 1, 2 and 4 possessed moderate cytotoxicity, suppressing HeLa cell line with IC_(50) va-lues of 24.3, 35.5 and 17.1 μmol·L~(-1), respectively. Compound 4 also could suppress K562 cells with an IC_(50) value of 39.8 μmol·L~(-1).
Humans
;
Garcinia mangostana/chemistry*
;
HeLa Cells
;
Antineoplastic Agents
;
Magnetic Resonance Spectroscopy
;
Xanthones/pharmacology*
;
Garcinia/chemistry*
;
Plant Extracts/chemistry*
;
Molecular Structure
4.Chemical constituents from whole herb of Hedyotis scandens.
Yu-Jun WANG ; Ju-Min HUANG ; Chun WEN ; Zi-Shuo ZHOU ; Qiao-Qiao FENG ; Chang-Hua HU ; Pei-Fu ZHOU ; Guo-Ping YIN
China Journal of Chinese Materia Medica 2023;48(22):6082-6087
This study aimed to investigate the chemical constituents in the water extract of the whole herb of Hedyotis scandens by silica gel, ODS, and MCI column chromatographies together with preparative high-performance liquid chromatography(HPLC). The structures of isolated constituents were identified by NMR, HR-ESI-MS, etc. Thirteen compounds were isolated and identified as methyl 4-benzoyloxy-3-methoxybenzeneacetate(1), 4-benzoyloxy-3-methoxybenzeneacetic acid(2), 3-(4-hydroxy-3-methoxyphenyl)-propanoic acid(3), salicylic acid(4), 3-hydroxy-4-methoxypyridine(5), syringic acid(6), hydroxycinnamic acid(7),(R)-6-methyl-4,6-bis(4-methylpent-3-enyl)cyclohexa-1,3-dienecarbaldehyde(8), 1,2-bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol(9), 1H-indole-3-carboxaldehyde(10), isoscopoletin(11), syringaresinol(12), and pinoresinol(13). Among them, compounds 1 and 2 were new phenolic acid compounds, compounds 3-5, 8-11, and 13 were isolated from this genus for the first time, and compounds 6, 7, and 12 were obtained from H. scandens for the first time. The activity test showed that compounds 1 and 10 had a certain inhibitory effect on Mycobacterium smegmatis, with MIC_(50) values of 58.5 and 33.3 μg·mL~(-1), respectively.
Hedyotis/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Magnetic Resonance Spectroscopy
;
Salicylic Acid
5.Variations of glucose content in Massa Medicata Fermentata during processing based on quantitative proton nuclear magnetic resonance.
Ya-Ling SHI ; Lu-Yu SHAN ; Jing-Jing YANG ; Miao-Miao JIANG ; Hui-Juan YU ; Yue-Fei WANG ; Xin CHAI
China Journal of Chinese Materia Medica 2023;48(23):6396-6402
A quantitative proton nuclear magnetic resonance(qHNMR) method was established to determine the glucose content in commercially available Massa Medicata Fermentata(MMF) products and explore the variations of glucose content in MMF products during processing. The qHNMR spectrum of MMF in deuterium oxide was obtained with 2,2,3,3-d_4-3-(trimethylsilyl) propionate sodium salt as the internal standard substance. With the doublet peaks of terminal hydrogen of glucose with chemical shift at δ 4.65 and δ 5.24 as quantitative peaks, the content of glucose in MMF samples was determined. The glucose content showed a good linear relationship within the range of 0.10-6.44 mg·mL~(-1). The relative standard deviations(RSDs) of precision, stability, repeatability, and recovery for determination were all less than 2.3%. The glucose content varied in different commercially available MMF samples, which were associated with the different fermentation days, wheat bran-to-flour ratios, and processing methods. The glucose content in MMF first increased and then decreased over the fermentation time. Compared with the MMF products fermented with wheat bran or flour alone, the products fermented with both wheat bran and flour had increased glucose. The glucose content of bran-fried MMF was slightly lower than that of raw MMF, while the glucose content in charred MMF was extremely low. In conclusion, the qHNMR method established in this study is simple, fast, and accurate, serving as a new method for determining the glucose content in MMF. Furthermore, this study clarifies the variations of glucose content in MMF during processing, which can not only indicate the processing degree but also provide a scientific basis for revealing the fermentation mechanism and improving the quality control of MMF.
Protons
;
Drugs, Chinese Herbal/chemistry*
;
Dietary Fiber
;
Magnetic Resonance Spectroscopy
6.Chemical constituents of Helleborus thibetanus.
Yu-Ze LI ; Dong-Dong ZHANG ; Wen-Li HUANG ; Yi JIANG ; Hua-Wei ZHANG ; Chong DENG ; Wei WANG ; Jian-Li LIU ; Xiao-Mei SONG
China Journal of Chinese Materia Medica 2023;48(23):6408-6413
The chemical constituents of Helleborus thibetanus were isolated and purified by silica gel column chromatography, Sephadex LH-20 gel column chromatography, and semi-preparative RP-HPLC, and the structures of all compounds were identified by modern spectrographic technology(MS, NMR). The MTT method was used to measure the cytotoxicity of compounds 1-8. Twelve compounds were isolated from the roots and rhizomes of H. thibetanus and were identified as(25R)-22β,25-expoxy-26-[(O-β-D-glucopyranosyl)oxy]-1β,3β-dihydroxyfurosta-5-en(1), β-sitosterol myristate(2), β-sitosterol lactate(3), β-sitosterol 3-O-β-D-glucopyrannoside(4), 4,6,8-trihydroxy-3,4-dihydronaphthalen-1(2H)-one(5), 1,3,5-trimethoxybenzene(6), 7,8-dimethylbenzo pteridine-2,4(1H,3H)-dione(7), 1H-indole-3-carboxylic acid(8), p-hydroxy cinnamic acid(9), lauric acid(10), n-butyl α-L-arabinofuranoside(11) and methyl-α-D-fructofuranoside(12), respectively. Among them, compound 1 is a new compound and named thibetanoside L; compounds 2, 5-8, 11 are first isolated from the family Ranunculaceae; compound 12 is isolated from the genus Helleborus for the first time. The results of MTT assay showed that the IC_(50) values of compounds 1-8 against HepG2 and HCT116 cells were greater than 100 μmol·L~(-1).
Helleborus/chemistry*
;
Molecular Structure
;
Plant Roots/chemistry*
;
Rhizome/chemistry*
;
Magnetic Resonance Spectroscopy
7.Chemical constituents from Salacia polysperma.
Xin-Yu YAN ; Die XIAO ; Qi NIU ; Hao-Nan XU ; Hao-Xin WANG ; Hong-Ping HE ; Zhi-Yong JIANG
China Journal of Chinese Materia Medica 2023;48(24):6676-6681
Nine compounds were isolated from the 90% ethanol extract of Salacia polysperma by silica gel, Sephadex LH-20 column chromatography, together with preparative HPLC methods. Based on HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the nine compounds were identified as 28-hydroxy wilforlide B(1), wilforlide A(2), 1β,3β-dihydroxyurs-9(11),12-diene(3),(-)-epicatechin(4),(+)-catechin(5),(-)-4'-O-methyl-ent-galloepicatechin(6), 3-hydroxy-1-(4-hydroxy-3-methoxy-phenyl)propan-1-one(7),(-)-(7S,8R)-4-hydroxy-3,3',5'-trimethoxy-8',9'-dinor-8,4'-oxyneoligna-7,9-diol-7'-aldehyde(8), and vanillic acid(9). Compound 1 is a new oleanane-type triterpene lactone. Compounds 1, 3, 4, 7-9 were isolated from the Salacia genus for the first time. All compounds were assayed for their α-glucosidase inhibitory activity. The results suggested that compound 8 exhibited moderate α-glucosidase inhibitory activity, with an IC_(50) value of 37.2 μmol·L~(-1), and the other compounds showed no α-glucosidase inhibitory activity.
Salacia/chemistry*
;
alpha-Glucosidases
;
Triterpenes/pharmacology*
;
Magnetic Resonance Spectroscopy
;
Ethanol
;
Molecular Structure
8.Research on a portable shielding-free ultra-low field magnetic resonance imaging system.
Yuxiang ZHANG ; Wei HE ; Lei YANG ; Yucheng HE ; Jiamin WU ; Zheng XU
Journal of Biomedical Engineering 2023;40(5):829-836
The portable light-weight magnetic resonance imaging system can be deployed in special occasions such as Intensive Care Unit (ICU) and ambulances, making it possible to implement bedside monitoring imaging systems, mobile stroke units and magnetic resonance platforms in remote areas. Compared with medium and high field imaging systems, ultra-low-field magnetic resonance imaging equipment utilizes light-weight permanent magnets, which are compact and easy to move. However, the image quality is highly susceptible to external electromagnetic interference without a shielded room and there are still many key technical problems in hardware design to be solved. In this paper, the system hardware design and environmental electromagnetic interference elimination algorithm were studied. Consequently, some research results were obtained and a prototype of portable shielding-free 50 mT magnetic resonance imaging system was built. The light-weight magnet and its uniformity, coil system and noise elimination algorithm and human brain imaging were verified. Finally, high-quality images of the healthy human brain were obtained. The results of this study would provide reference for the development and application of ultra-low-field magnetic resonance imaging technology.
Humans
;
Magnetic Resonance Imaging/methods*
;
Magnetic Resonance Spectroscopy/methods*
;
Head
;
Equipment Design
;
Magnets
9.Recognition of motor imagery electroencephalogram based on flicker noise spectroscopy and weighted filter bank common spatial pattern.
Keling FEI ; Xiaoxian CAI ; Shunzhi CHEN ; Lizheng PAN ; Wei WANG
Journal of Biomedical Engineering 2023;40(6):1126-1134
Due to the high complexity and subject variability of motor imagery electroencephalogram, its decoding is limited by the inadequate accuracy of traditional recognition models. To resolve this problem, a recognition model for motor imagery electroencephalogram based on flicker noise spectrum (FNS) and weighted filter bank common spatial pattern ( wFBCSP) was proposed. First, the FNS method was used to analyze the motor imagery electroencephalogram. Using the second derivative moment as structure function, the ensued precursor time series were generated by using a sliding window strategy, so that hidden dynamic information of transition phase could be captured. Then, based on the characteristic of signal frequency band, the feature of the transition phase precursor time series and reaction phase series were extracted by wFBCSP, generating features representing relevant transition and reaction phase. To make the selected features adapt to subject variability and realize better generalization, algorithm of minimum redundancy maximum relevance was further used to select features. Finally, support vector machine as the classifier was used for the classification. In the motor imagery electroencephalogram recognition, the method proposed in this study yielded an average accuracy of 86.34%, which is higher than the comparison methods. Thus, our proposed method provides a new idea for decoding motor imagery electroencephalogram.
Brain-Computer Interfaces
;
Imagination
;
Signal Processing, Computer-Assisted
;
Electroencephalography/methods*
;
Algorithms
;
Spectrum Analysis
10.2,3-Seco and 3-nor guaianolides fromAchillea alpina with antidiabetic activity.
Guimin XUE ; Chenguang ZHAO ; Jinfeng XUE ; Jiangjing DUAN ; Hao PAN ; Xuan ZHAO ; Zhikang YANG ; Hui CHEN ; Yanjun SUN ; Weisheng FENG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(8):610-618
In this study, we presented the isolation and characterization of eight novel seco-guaianolide sesquiterpenoids (1-8) and two known guaianolide derivatives (9 and 10), from the aerial part of Achillea alpina L.. Compounds 1-3 were identified as guaianolides bearing an oxygen insertion at the 2, 3 position, while compounds 4-8 belonged to a group of special 3-nor guaianolide sesquiterpenoids. The structural elucidation of 1-8, including their absolute configurations, were accomplished by a combination of spectroscopic data analysis and quantum electronic circular dichroism (ECD) calculations. To evaluate the potential antidiabetic activity of compounds 1-10, we investigated their effects on glucose consumption in palmitic acid (PA)-mediated HepG2-insulin resistance (IR) cells. Among the tested compounds, compound 7 demonstrated the most pronounced ability to reverse IR. Moreover, a mechanistic investigation revealed that compound 7 exerted its antidiabetic effect by reducing the production of the pro-inflammatory cytokine IL-1β, which was achieved through the suppression of the NLRP3 pathway.
Humans
;
Hypoglycemic Agents/pharmacology*
;
Circular Dichroism
;
Cytokines
;
Glucose
;
Hep G2 Cells
;
Insulin Resistance

Result Analysis
Print
Save
E-mail