1.Treatment of a patient with class I malocclusion with moderate crowding and missing first molar: A case report
Ida Bagus Narmada ; Vanda Ramadhani ; Ike Sesaria Pratiknjo ; Wulan Prastiwi
Acta Medica Philippina 2023;57(1):74-79
The most common occlusal feature of Class I malocclusion is crowding. Crowded and irregular teeth occur in a majority of the population and are the most common complication in adults. This is a case report of a 21-year-old woman with moderate crowding and a missing lower left first molar. The first permanent molars are sometimes unnoticed by the child or their parents and bring a risk of caries to the first permanent molar. Caries in the first molars that persist without any treatment will give a poor prognosis. Treatment was performed using a fixed orthodontic appliance with the extraction of the two upper and one lower first premolars.
Angle Class I
;
malocclusion
;
tooth crowding
;
tooth loss
2.Effects of post-traumatic stress disorder on the excitability of glutamatergic and GABAergic neurons in dorsal and ventral hippocampus in mice.
Dong-Bo LIU ; Yan SHI ; Shen-Ping ZHENG ; Hao-Ran ZHOU ; Li-Wei ZHAO
Acta Physiologica Sinica 2023;75(3):369-378
The purpose of this study was to investigate the effects of post-traumatic stress disorder (PTSD) on electrophysiological characteristics of glutamatergic and GABAergic neurons in dorsal hippocampus (dHPC) and ventral hippocampus (vHPC) in mice, and to elucidate the mechanisms underlying the plasticity of hippocampal neurons and memory regulation after PTSD. Male C57Thy1-YFP/GAD67-GFP mice were randomly divided into PTSD group and control group. Unavoidable foot shock (FS) was applied to establish PTSD model. The spatial learning ability was explored by water maze test, and the changes in electrophysiological characteristics of glutamatergic and GABAergic neurons in dHPC and vHPC were examined using whole-cell recording method. The results showed that FS significantly reduced the movement speed, and enhanced the number and percentage of freezing. PTSD significantly prolonged the escape latency in localization avoidance training, shortened the swimming time in the original quadrant, extended the swimming time in the contralateral quadrant, and increased absolute refractory period, energy barrier and inter-spike interval of glutamatergic neurons in dHPC and GABAergic neurons in vHPC, while decreased absolute refractory period, energy barrier and inter-spike interval of GABAergic neurons in dHPC and glutamatergic neurons in vHPC. These results suggest that PTSD can damage spatial perception of mice, down-regulate the excitability of dHPC and up-regulate the excitability of vHPC, and the underlying mechanism may involve the regulation of spatial memory by the plasticity of neurons in dHPC and vHPC.
Mice
;
Male
;
Animals
;
Stress Disorders, Post-Traumatic
;
Hippocampus
;
Spatial Learning
;
GABAergic Neurons
3.Neural Correlates of Spatial Navigation in Primate Hippocampus.
Neuroscience Bulletin 2023;39(2):315-327
The hippocampus has been extensively implicated in spatial navigation in rodents and more recently in bats. Numerous studies have revealed that various kinds of spatial information are encoded across hippocampal regions. In contrast, investigations of spatial behavioral correlates in the primate hippocampus are scarce and have been mostly limited to head-restrained subjects during virtual navigation. However, recent advances made in freely-moving primates suggest marked differences in spatial representations from rodents, albeit some similarities. Here, we review empirical studies examining the neural correlates of spatial navigation in the primate (including human) hippocampus at the levels of local field potentials and single units. The lower frequency theta oscillations are often intermittent. Single neuron responses are highly mixed and task-dependent. We also discuss neuronal selectivity in the eye and head coordinates. Finally, we propose that future studies should focus on investigating both intrinsic and extrinsic population activity and examining spatial coding properties in large-scale hippocampal-neocortical networks across tasks.
Animals
;
Humans
;
Spatial Navigation/physiology*
;
Hippocampus/physiology*
;
Primates
;
Neurons/physiology*
;
Theta Rhythm/physiology*
5.Chronic stress increases dopamine levels in hippocampal dentate gyrus and impairs spatial learning and memory in rats.
Ke ZHAO ; Peng REN ; Ming-Yue LI ; Qing-Hua JIN ; Bin XIAO
Acta Physiologica Sinica 2020;72(6):777-784
The objective of this study was to elucidate the effect of chronic stress (CS) on dopamine (DA) level and synaptic efficiency in the hippocampal dentate gyrus (DG) during spatial learning and memory. Sprague Dawley (SD) male rats were randomly divided into control group and CS group (n = 10). CS group was treated with chronic mild unpredictable stress, and control group did not receive any treatments. The levels of epinephrine and corticosterone (CORT) in serum were measured by using enzyme-linked immunosorbent assay (ELISA); the spatial learning and memory abilities of rats were measured by Morris water maze (MWM) test. Meanwhile, the amplitude of field excitatory postsynaptic potential (fEPSP) and concentration of DA in the DG region were determined by in vivo electrophysiology, microdialysis and HPLC techniques during MWM test in rats. After that, the DA D1 receptor (D1R) and its key downstream members in DG were examined by immunohistochemistry or Western blot assay. The results showed that the levels of epinephrine and CORT in the serum of the rats in CS group were significantly increased compared with those in the control group (P < 0.05). In CS group rats, the escape latency was significantly prolonged and the number of platform crossing was markedly decreased during MWM test, compared with those in control group (P < 0.05). Furthermore, the amplitude of fEPSP in the DG was not changed during MWM test in CS rats, while it was significantly increased on the 3rd day of MWM test in control group (P < 0.05). Compared with baseline or control group, CS group showed significantly increased DA level from the 1st to 3rd days of MWM test in the DG (P < 0.05). In addition, the protein expression of D1R was markedly up-regulated in the DG in CS group, while the protein expression levels of p-PKA, p-CREB and BDNF were significantly reduced, compared with those in control group. These results suggest that CS may impair spatial learning and memory abilities in rats through the enhancement of the DA levels in the hippocampal DG.
Animals
;
Dentate Gyrus
;
Dopamine
;
Hippocampus
;
Male
;
Maze Learning
;
Rats
;
Rats, Sprague-Dawley
;
Spatial Learning
;
Spatial Memory
6.Evaluation of the risk factors associated with emergency department boarding: A retrospective cross-sectional study.
Yousef NOURI ; Changiz GHOLIPOUR ; Javad AGHAZADEH ; Shahriar KHANAHMADI ; Talayeh BEYGZADEH ; Danial NOURI ; Mehryar NAHAEI ; Reza KARIMI ; Elnaz HOSSEINALIPOUR
Chinese Journal of Traumatology 2020;23(6):346-350
PURPOSE:
Boarding is a common problem in the emergency department (ED) and is associated with poor health care and outcome. Imam Khomeini Hospital is the main healthcare center in Urmia, a metropolis in the northwest of Iran. Due to the overcrowding and high patient load, we aim to characterize the rate, cause and consequence of boarding in the ED of this center.
METHODS:
All medical records of patients who presented to the ED of Imam Khomeini Hospital from August 1, 2017 to August 1, 2018 were retrospectively analyzed. Patients with uncompleted records were excluded. Boarding was defined as the inability to transfer the admitted ED patients to a downstream ward in ≥2 h after the admission order. Demographic data, boarding rate, mortality and triage levels (1-5) assessed by emergency severity index were collected and analyzed. The first present time of patients was classified into 4 ranges as 0:00-5:59, 6:00-11:59, 12:00-17:59 and 18:00-23:59. Descriptive, parametric and non-parametric statistical tests were performed and the risk of boarding was determined by Pearson Chi-square test.
RESULTS:
Demographic data analysis showed that 941 (58.5%) male and 667 (41.5%) female, altogether 1608 patients were included in this study. Five patients (0.3%) died. The distribution of patients with the triage levels 1-5 was respectively 79 (4.9%), 1150 (71.5%), 374 (23.3%), 4 (0.2%) and 0 (0%). Most patients were of level 2. Only 75 (4.7%) patients required intensive care. The majority of patients (84.2%) were presented at weekdays. The maximum patient load was observed between 12:00-17:59. Of the 1608 patients, 340 (21.1%) experienced boarding within a mean admission time of 13.70 h. Among the 340-boarded patients, 20.1% belonged to surgery, 12.1% to orthopedics, 10.9% to neurosurgery and 10.3% to neurology. The boarding rate was higher in females, patients requiring intensive care and those with low triage levels. Compared with the non-boarded, the boarded patients had a higher mean age.
CONCLUSION
The boarding rate is higher in the older and female patients. Moreover, boarding is dependent on the downstream ward sections: patients requiring surgical management experience the maximum boarding rate.
Age Factors
;
Chi-Square Distribution
;
Cross-Sectional Studies
;
Crowding
;
Emergency Service, Hospital
;
Female
;
Hospital Mortality
;
Hospitalization/statistics & numerical data*
;
Humans
;
Iran
;
Length of Stay
;
Male
;
Patient Admission
;
Retrospective Studies
;
Risk Assessment/methods*
;
Risk Factors
;
Sex Factors
;
Time Factors
;
Triage
7.Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control.
Kenichi AZUMA ; U YANAGI ; Naoki KAGI ; Hoon KIM ; Masayuki OGATA ; Motoya HAYASHI
Environmental Health and Preventive Medicine 2020;25(1):66-66
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new zoonotic agent that emerged in December 2019, causes coronavirus disease 2019 (COVID-19). This infection can be spread by asymptomatic, presymptomatic, and symptomatic carriers. SARS-CoV-2 spreads primarily via respiratory droplets during close person-to-person contact in a closed space, especially a building. This article summarizes the environmental factors involved in SARS-CoV-2 transmission, including a strategy to prevent SARS-CoV-2 transmission in a building environment. SARS-CoV-2 can persist on surfaces of fomites for at least 3 days depending on the conditions. If SARS-CoV-2 is aerosolized intentionally, it is stable for at least several hours. SARS-CoV-2 is inactivated rapidly on surfaces with sunlight. Close-contact aerosol transmission through smaller aerosolized particles is likely to be combined with respiratory droplets and contact transmission in a confined, crowded, and poorly ventilated indoor environment, as suggested by some cluster cases. Although evidence of the effect of aerosol transmission is limited and uncertainty remains, adequate preventive measures to control indoor environmental quality are required, based on a precautionary approach, because COVID-19 has caused serious global damages to public health, community, and the social economy. The expert panel for COVID-19 in Japan has focused on the "3 Cs," namely, "closed spaces with poor ventilation," "crowded spaces with many people," and "close contact." In addition, the Ministry of Health, Labour and Welfare of Japan has been recommending adequate ventilation in all closed spaces in accordance with the existing standards of the Law for Maintenance of Sanitation in Buildings as one of the initial political actions to prevent the spread of COVID-19. However, specific standards for indoor environmental quality control have not been recommended and many scientific uncertainties remain regarding the infection dynamics and mode of SARS-CoV-2 transmission in closed indoor spaces. Further research and evaluation are required regarding the effect and role of indoor environmental quality control, especially ventilation.
Aerosols
;
Air Pollution, Indoor/prevention & control*
;
Betacoronavirus/physiology*
;
COVID-19
;
Coronavirus Infections/transmission*
;
Crowding
;
Environment, Controlled
;
Humans
;
Pandemics/prevention & control*
;
Pneumonia, Viral/transmission*
;
SARS-CoV-2
;
Ventilation
8.β-Sitosterol treatment attenuates cognitive deficits and prevents amyloid plaque deposition in amyloid protein precursor/presenilin 1 mice
Jian Ya YE ; Li LI ; Qing Mao HAO ; Yong QIN ; Chang Sheng MA
The Korean Journal of Physiology and Pharmacology 2020;24(1):39-46
Alzheimer's disease (AD) is the most common neurodegenerative disorder causing dementia worldwide, and is mainly characterized by aggregated β-amyloid (Aβ). Increasing evidence has shown that plant extracts have the potential to delay AD development. The plant sterol β-Sitosterol has a potential role in inhibiting the production of platelet Aβ, suggesting that it may be useful for AD prevention. In the present study, we aimed to investigate the effect and mechanism of β-Sitosterol on deficits in learning and memory in amyloid protein precursor/presenilin 1 (APP/PS1) double transgenic mice. APP/PS1 mice were treated with β-Sitosterol for four weeks, from the age of seven months. Brain Aβ metabolism was evaluated using ELISA and Western blotting. We found that β-Sitosterol treatment can improve spatial learning and recognition memory ability, and reduce plaque load in APP/PS1 mice. β-Sitosterol treatment helped reverse dendritic spine loss in APP/PS1 mice and reversed the decreased hippocampal neuron miniature excitatory postsynaptic current frequency. Our research helps to explain and support the neuroprotective effect of β-Sitosterol, which may offer a novel pharmaceutical agent for the treatment of AD. Taken together, these findings suggest that β-Sitosterol ameliorates memory and learning impairment in APP/PS1 mice and possibly decreases Aβ deposition.
Alzheimer Disease
;
Amyloid
;
Animals
;
Blood Platelets
;
Blotting, Western
;
Brain
;
Cognition Disorders
;
Dementia
;
Dendritic Spines
;
Enzyme-Linked Immunosorbent Assay
;
Excitatory Postsynaptic Potentials
;
Learning
;
Memory
;
Metabolism
;
Mice
;
Mice, Transgenic
;
Neurodegenerative Diseases
;
Neurons
;
Neuroprotective Agents
;
Plant Extracts
;
Plants
;
Plaque, Amyloid
;
Spatial Learning
9.Behavioral Abnormality along with NMDAR-related CREB Suppression in Rat Hippocampus after Shortwave Exposure.
Chao YU ; Yan Xin BAI ; Xin Ping XU ; Ya Bing GAO ; Yan Hui HAO ; Hui WANG ; Sheng Zhi TAN ; Wen Chao LI ; Jing ZHANG ; Bin Wei YAO ; Ji DONG ; Li ZHAO ; Rui Yun PENG
Biomedical and Environmental Sciences 2019;32(3):189-198
OBJECTIVE:
To estimate the detrimental effects of shortwave exposure on rat hippocampal structure and function and explore the underlying mechanisms.
METHODS:
One hundred Wistar rats were randomly divided into four groups (25 rats per group) and exposed to 27 MHz continuous shortwave at a power density of 5, 10, or 30 mW/cm2 for 6 min once only or underwent sham exposure for the control. The spatial learning and memory, electroencephalogram (EEG), hippocampal structure and Nissl bodies were analysed. Furthermore, the expressions of N-methyl-D-aspartate receptor (NMDAR) subunits (NR1, NR2A, and NR2B), cAMP responsive element-binding protein (CREB) and phosphorylated CREB (p-CREB) in hippocampal tissue were analysed on 1, 7, and 14 days after exposure.
RESULTS:
The rats in the 10 and 30 mW/cm2 groups had poor learning and memory, disrupted EEG oscillations, and injured hippocampal structures, including hippocampal neurons degeneration, mitochondria cavitation and blood capillaries swelling. The Nissl body content was also reduced in the exposure groups. Moreover, the hippocampal tissue in the 30 mW/cm2 group had increased expressions of NR2A and NR2B and decreased levels of CREB and p-CREB.
CONCLUSION
Shortwave exposure (27 MHz, with an average power density of 10 and 30 mW/cm2) impaired rats' spatial learning and memory and caused a series of dose-dependent pathophysiological changes. Moreover, NMDAR-related CREB pathway suppression might be involved in shortwave-induced structural and functional impairments in the rat hippocampus.
Animals
;
Cyclic AMP Response Element-Binding Protein
;
genetics
;
metabolism
;
Dose-Response Relationship, Radiation
;
Electroencephalography
;
radiation effects
;
Hippocampus
;
radiation effects
;
Male
;
Memory
;
radiation effects
;
Nissl Bodies
;
physiology
;
radiation effects
;
Radio Waves
;
adverse effects
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
genetics
;
metabolism
;
Spatial Learning
;
radiation effects
10.NMDA Receptor Antagonist MK801 Protects Against 1-Bromopropane-Induced Cognitive Dysfunction.
Lin XU ; Xiaofei QIU ; Shuo WANG ; Qingshan WANG ; Xiu-Lan ZHAO
Neuroscience Bulletin 2019;35(2):347-361
Occupational exposure to 1-bromopropane (1-BP) induces learning and memory deficits. However, no therapeutic strategies are currently available. Accumulating evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) and neuroinflammation are involved in the cognitive impairments in neurodegenerative diseases. In this study we aimed to investigate whether the noncompetitive NMDAR antagonist MK801 protects against 1-BP-induced cognitive dysfunction. Male Wistar rats were administered with MK801 (0.1 mg/kg) prior to 1-BP intoxication (800 mg/kg). Their cognitive performance was evaluated by the Morris water maze test. The brains of rats were dissected for biochemical, neuropathological, and immunological analyses. We found that the spatial learning and memory were significantly impaired in the 1-BP group, and this was associated with neurodegeneration in both the hippocampus (especially CA1 and CA3) and cortex. Besides, the protein levels of phosphorylated NMDARs were increased after 1-BP exposure. MK801 ameliorated the 1-BP-induced cognitive impairments and degeneration of neurons in the hippocampus and cortex. Mechanistically, MK801 abrogated the 1-BP-induced disruption of excitatory and inhibitory amino-acid balance and NMDAR abnormalities. Subsequently, MK801 inhibited the microglial activation and release of pro-inflammatory cytokines in 1-BP-treated rats. Our findings, for the first time, revealed that MK801 protected against 1-BP-induced cognitive dysfunction by ameliorating NMDAR function and blocking microglial activation, which might provide a potential target for the treatment of 1-BP poisoning.
Animals
;
Brain
;
drug effects
;
metabolism
;
pathology
;
Cognitive Dysfunction
;
drug therapy
;
metabolism
;
pathology
;
Disease Models, Animal
;
Dizocilpine Maleate
;
pharmacology
;
Excitatory Amino Acid Antagonists
;
pharmacology
;
Hydrocarbons, Brominated
;
Inflammasomes
;
drug effects
;
metabolism
;
Male
;
Maze Learning
;
drug effects
;
physiology
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
metabolism
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Nootropic Agents
;
pharmacology
;
Random Allocation
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
antagonists & inhibitors
;
metabolism
;
Spatial Memory
;
drug effects
;
physiology
;
Specific Pathogen-Free Organisms


Result Analysis
Print
Save
E-mail