1.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
2.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
3.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
4.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
5.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
6.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
7.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
8.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
9.Risk of Ischemic Stroke in Relation to Helicobacter pylori Infection and Eradication Status: A Large-Scale Prospective Observational Cohort Study
Eun-Bi JEON ; Nayoung KIM ; Beom Joon KIM ; In-Chang HWANG ; Sang Bin KIM ; Ji-Hyun KIM ; Yonghoon CHOI ; Yu Kyung JUN ; Hyuk YOON ; Cheol Min SHIN ; Young Soo PARK ; Dong Ho LEE ; Soyeon AHN
Gut and Liver 2024;18(4):642-653
Background/Aims:
A few studies have suggested the association between Helicobacter pylori (HP) infection and ischemic stroke. However, the impact of HP eradication on stroke risk has not been well evaluated. This study aimed to assess the influence of HP eradication on the incidence of ischemic stroke, considering the potential effect of sex.
Methods:
This prospective observational cohort study was conducted at Seoul National University Bundang Hospital, from May 2003 to February 2023, and involved gastroscopy-based HP testing. Propensity score (PS) matching was employed to ensure balanced groups by matching patients in the HP eradicated group (n=2,803) in a 3:1 ratio with patients in the HP non-eradicated group (n=960). Cox proportional hazard regression analysis was used to evaluate the risk of ischemic stroke.
Results:
Among 6,664 patients, multivariate analysis after PS matching indicated that HP eradication did not significantly alter the risk of ischemic stroke (hazard ratio, 0.531; 95% confidence interval, 0.221 to 1.270; p=0.157). Sex-specific subgroup analyses, both univariate and multivariate, did not yield statistically significant differences. However, Kaplan-Meier analysis revealed a potential trend: the females in the HP eradicated group exhibited a lower incidence of ischemic stroke than those in the HP non-eradicated group, although this did not reach statistical significance (p=0.057).
Conclusions
This finding suggests that HP eradication might not impact the risk of ischemic stroke. However, there was a trend showing that females potentially had a lower risk of ischemic stroke following HP eradication, though further investigation is required to establish definitive evidence.
10.Analysis of Characteristics and Risk Factors of Patients with Single Gastric Cancer and Synchronous Multiple Gastric Cancer among 14,603 Patients
Du Hyun SONG ; Nayoung KIM ; Hyeong Ho JO ; Sangbin KIM ; Yonghoon CHOI ; Hyeon Jeong OH ; Hye Seung LEE ; Hyuk YOON ; Cheol Min SHIN ; Young Soo PARK ; Dong Ho LEE ; So Hyun KANG ; Young Suk PARK ; Sang-Hoon AHN ; Yun-Suhk SUH ; Do Joong PARK ; Hyung Ho KIM ; Ji-Won KIM ; Jin Won KIM ; Keun-Wook LEE ; Won CHANG ; Ji Hoon PARK ; Yoon Jin LEE ; Kyoung Ho LEE ; Young Hoon KIM ; Soyeon AHN ; Young-Joon SURH
Gut and Liver 2024;18(2):231-244
Background/Aims:
Synchronous multiple gastric cancer (SMGC) accounts for approximately 6% to 14% of gastric cancer (GC) cases. This study aimed to identify risk factors for SMGC.
Methods:
A total of 14,603 patients diagnosed with GC were prospectively enrolled. Data including age, sex, body mass index, smoking, alcohol consumption, family history, p53 expression, microsatellite instability, cancer classification, lymph node metastasis, and treatment were collected. Risk factors were analyzed using logistic regression analysis between a single GC and SMGC.
Results:
The incidence of SMGC was 4.04%, and that of early GC (EGC) and advanced GC (AGC) was 5.43% and 3.11%, respectively. Patients with SMGC were older (65.33 years vs 61.75 years, p<0.001) and more likely to be male. Lymph node metastasis was found in 27% of patients with SMGC and 32% of patients with single GC. Multivariate analysis showed that SMGC was associated with sex (male odds ratio [OR], 1.669; 95% confidence interval [CI], 1.223 to 2.278; p=0.001), age (≥65 years OR, 1.532; 95% CI, 1.169 to 2.008; p=0.002), and EGC (OR, 1.929; 95% CI, 1.432 to 2.600; p<0.001). Survival rates were affected by Lauren classification, sex, tumor size, cancer type, distant metastasis, and venous invasion but were not related to the number of GCs. However, the survival rate of AGC with SMGC was very high.
Conclusions
SMGC had unique characteristics such as male sex, older age, and EGC, and the survival rate of AGC, in which the intestinal type was much more frequent, was very good (Trial registration number: NCT04973631).

Result Analysis
Print
Save
E-mail