1.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
2.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
3.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
4.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
Background/Aims:
This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score.
Methods:
We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score.
Results:
A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites.
Conclusions
The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites.
5.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
6.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
7.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
Background/Aims:
This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score.
Methods:
We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score.
Results:
A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites.
Conclusions
The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites.
8.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
Background/Aims:
This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score.
Methods:
We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score.
Results:
A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites.
Conclusions
The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites.
9.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
10.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.

Result Analysis
Print
Save
E-mail