1.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
2.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
3.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
4.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
5.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
6.Diagnostic Value of Zero Echo Time Magnetic Resonance Imaging for Pediatric Osseous Pathologies
Soojin KIM ; Young Hun CHOI ; Jae Won CHOI ; Yeon Jin CHO ; Seunghyun LEE ; Jae Yeon HWANG ; Jung-Eun CHEON
Investigative Magnetic Resonance Imaging 2024;28(4):184-192
Purpose:
This study aimed to determine whether zero echo time magnetic resonance imaging (ZTE-MRI), as an alternative imaging modality, and conventional computed tomography (CT) have similar diagnostic qualities for assessing pediatric osseous pathologies.
Materials and Methods:
Twenty-six sets of pediatric musculoskeletal CT and MRI scans (15 boys and 11 girls; mean age, 12 ± 4 years; range, 5–23 years) acquired at Seoul National University Children’s Hospital (January 2021 to November 2023) were retrospectively evaluated. CT-like images from ZTE-MRI were generated using grayscale inversion. Two radiologists independently assessed ZTE-MRI image quality (S anat) on a 5-point scale (1 = nondiagnostic, 5 = excellent) and a comparative scale (–2 = CT greater, 0 = same, 2 = ZTE-MRI greater) for lesion delineation (Scomp). The confidence interval of proportions and intraclass correlation coefficient were calculated to assess inter-rater agreement, and Wilcoxon rank-sum test, Mann–Whitney U test, or paired t-test was used to compare image quality or cortical thickness between the modalities.
Results:
ZTE-MRI demonstrated diagnostic quality (S anat ≥ 3) in 85%–96% of the cases, 89%–96% for cortical delineation, 92%–100% for intramedullary cavity (IMC) delineation, and 92% for lesion delineation. Compared with conventional CT, ZTE-MRI showed comparable diagnostic power (Scomp ≥ –1) in 92%–96% of the cases, with Scomp scores indicating no significant difference in lesion delineation (p = 0.53 in reader 1 and p = 0.25 in reader 2). There was a preference for CT over ZTE-MRI in terms of overall image quality and delineation of the cortex and IMC (p < 0.001). Cortical thickness was not significantly different (p = 0.11) between ZTE-MRI and CT.
Conclusion
ZTE-MRI demonstrated diagnostic quality comparable to that of CT, particularly in lesion delineation. In addition to the unique information that conventional MRI can provide, ZTE-MRI can provide additional information about osseous structures similar to that provided by CT, which we believe will be valuable in the future.
7.Diagnostic Value of Zero Echo Time Magnetic Resonance Imaging for Pediatric Osseous Pathologies
Soojin KIM ; Young Hun CHOI ; Jae Won CHOI ; Yeon Jin CHO ; Seunghyun LEE ; Jae Yeon HWANG ; Jung-Eun CHEON
Investigative Magnetic Resonance Imaging 2024;28(4):184-192
Purpose:
This study aimed to determine whether zero echo time magnetic resonance imaging (ZTE-MRI), as an alternative imaging modality, and conventional computed tomography (CT) have similar diagnostic qualities for assessing pediatric osseous pathologies.
Materials and Methods:
Twenty-six sets of pediatric musculoskeletal CT and MRI scans (15 boys and 11 girls; mean age, 12 ± 4 years; range, 5–23 years) acquired at Seoul National University Children’s Hospital (January 2021 to November 2023) were retrospectively evaluated. CT-like images from ZTE-MRI were generated using grayscale inversion. Two radiologists independently assessed ZTE-MRI image quality (S anat) on a 5-point scale (1 = nondiagnostic, 5 = excellent) and a comparative scale (–2 = CT greater, 0 = same, 2 = ZTE-MRI greater) for lesion delineation (Scomp). The confidence interval of proportions and intraclass correlation coefficient were calculated to assess inter-rater agreement, and Wilcoxon rank-sum test, Mann–Whitney U test, or paired t-test was used to compare image quality or cortical thickness between the modalities.
Results:
ZTE-MRI demonstrated diagnostic quality (S anat ≥ 3) in 85%–96% of the cases, 89%–96% for cortical delineation, 92%–100% for intramedullary cavity (IMC) delineation, and 92% for lesion delineation. Compared with conventional CT, ZTE-MRI showed comparable diagnostic power (Scomp ≥ –1) in 92%–96% of the cases, with Scomp scores indicating no significant difference in lesion delineation (p = 0.53 in reader 1 and p = 0.25 in reader 2). There was a preference for CT over ZTE-MRI in terms of overall image quality and delineation of the cortex and IMC (p < 0.001). Cortical thickness was not significantly different (p = 0.11) between ZTE-MRI and CT.
Conclusion
ZTE-MRI demonstrated diagnostic quality comparable to that of CT, particularly in lesion delineation. In addition to the unique information that conventional MRI can provide, ZTE-MRI can provide additional information about osseous structures similar to that provided by CT, which we believe will be valuable in the future.
8.Diagnostic Value of Zero Echo Time Magnetic Resonance Imaging for Pediatric Osseous Pathologies
Soojin KIM ; Young Hun CHOI ; Jae Won CHOI ; Yeon Jin CHO ; Seunghyun LEE ; Jae Yeon HWANG ; Jung-Eun CHEON
Investigative Magnetic Resonance Imaging 2024;28(4):184-192
Purpose:
This study aimed to determine whether zero echo time magnetic resonance imaging (ZTE-MRI), as an alternative imaging modality, and conventional computed tomography (CT) have similar diagnostic qualities for assessing pediatric osseous pathologies.
Materials and Methods:
Twenty-six sets of pediatric musculoskeletal CT and MRI scans (15 boys and 11 girls; mean age, 12 ± 4 years; range, 5–23 years) acquired at Seoul National University Children’s Hospital (January 2021 to November 2023) were retrospectively evaluated. CT-like images from ZTE-MRI were generated using grayscale inversion. Two radiologists independently assessed ZTE-MRI image quality (S anat) on a 5-point scale (1 = nondiagnostic, 5 = excellent) and a comparative scale (–2 = CT greater, 0 = same, 2 = ZTE-MRI greater) for lesion delineation (Scomp). The confidence interval of proportions and intraclass correlation coefficient were calculated to assess inter-rater agreement, and Wilcoxon rank-sum test, Mann–Whitney U test, or paired t-test was used to compare image quality or cortical thickness between the modalities.
Results:
ZTE-MRI demonstrated diagnostic quality (S anat ≥ 3) in 85%–96% of the cases, 89%–96% for cortical delineation, 92%–100% for intramedullary cavity (IMC) delineation, and 92% for lesion delineation. Compared with conventional CT, ZTE-MRI showed comparable diagnostic power (Scomp ≥ –1) in 92%–96% of the cases, with Scomp scores indicating no significant difference in lesion delineation (p = 0.53 in reader 1 and p = 0.25 in reader 2). There was a preference for CT over ZTE-MRI in terms of overall image quality and delineation of the cortex and IMC (p < 0.001). Cortical thickness was not significantly different (p = 0.11) between ZTE-MRI and CT.
Conclusion
ZTE-MRI demonstrated diagnostic quality comparable to that of CT, particularly in lesion delineation. In addition to the unique information that conventional MRI can provide, ZTE-MRI can provide additional information about osseous structures similar to that provided by CT, which we believe will be valuable in the future.
9.Long-term endocrine sequelae after hematopoietic stem cell transplantation in children and adolescents
Soojin HWANG ; Yena LEE ; Ji-Hee YOON ; Ja Hye KIM ; Hyery KIM ; Kyung-Nam KOH ; Ho Joon IM ; Han-Wook YOO ; Jin-Ho CHOI
Annals of Pediatric Endocrinology & Metabolism 2024;29(2):109-118
Purpose:
As the survival rate from pediatric cancers has increased significantly with advances in treatment modalities, long-term endocrine complications have also risen. This study investigated the frequencies and risks of endocrine sequelae in childhood cancer survivors who received hematopoietic stem cell transplantation (HSCT).
Methods:
This study included 200 pediatric patients who underwent HSCT. Clinical and endocrinological findings were collected retrospectively. The median follow-up duration after HSCT was 14 years.
Results:
Endocrine complications occurred in 135 patients (67.5%). Children who underwent HSCT at pubertal age (n=100) were at higher risk of endocrine complications than those who received it at prepubertal age (79% vs. 56%, P=0.001). The most common complication was hypogonadism (40%), followed by dyslipidemia (22%). Short stature and diabetes mellitus were more prevalent in the prepubertal group, whereas hypogonadism and osteoporosis were more common in the pubertal group. Being female, pubertal age at HSCT, and glucocorticoid use were predictors of an increased risk for any complication. Radiation exposure increased the risk of short stature and hypothyroidism. Hypogonadism was significantly associated with being female, pubertal age at HSCT, and high-dose radiation. Pubertal age at HSCT also increased the risks of osteoporosis and dyslipidemia.
Conclusion
This study demonstrates that long-term endocrine complications are common after HSCT in children and adolescents. Age at HSCT is a critical factor for endocrine complications after HSCT. These findings suggest that surveillance strategies for endocrine complications in childhood cancer survivors should be specified according to age at HSCT.
10.Prenatal diagnosis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency through molecular genetic analysis of the CYP21A2 gene
Ji-Hee YOON ; Soojin HWANG ; Ja Hye KIM ; Gu-Hwan KIM ; Han-Wook YOO ; Jin-Ho CHOI
Annals of Pediatric Endocrinology & Metabolism 2024;29(1):54-59
Purpose:
Deficiency of 21-hydroxylase (21-OHD) is an autosomal recessively inherited disorder that is characterized by adrenal insufficiency and androgen excess. This study was performed to investigate the clinical utility of prenatal diagnosis of 21-OHD using molecular genetic testing in families at risk.
Methods:
This study included 27 pregnant women who had previously borne a child with 21-OHD. Fetal tissues were obtained using chorionic villus sampling (CVS) or amniocentesis. After the genomic DNA was isolated, Sanger sequencing of CYP21A2 and multiplex ligation-dependent probe amplification were performed. The clinical and endocrinological findings were reviewed retrospectively.
Results:
A total of 39 prenatal genetic tests was performed on 27 pregnant women and their fetal tissues. The mean gestational age at the time of testing was 11.7 weeks for CVS and 17.5 weeks for amniocentesis. Eleven fetuses (28.2%) were diagnosed with 21-OHD. Among them, 10 fetuses (90.9%) harbored the same mutation as siblings who were previously diagnosed with 21-OHD. Among these, 4 fetuses (3 males and 1 female) identified as affected were born alive. All 4 patients have been treated with hydrocortisone, 9α-fludrocortisone, and sodium chloride since a mean of 3.7 days of life. The male patients did not show hyponatremia and dehydration, although they harbored pathogenic variants associated with the salt-wasting type of 21-OHD.
Conclusion
This study demonstrated the diagnostic efficacy and clinical consequences of diagnosis by prenatal genetic testing in families at risk for 21-OHD. All patients identified as affected were treated with hydrocortisone and 9α-fludrocortisone early after birth, which can prevent a life-threatening adrenal crisis.

Result Analysis
Print
Save
E-mail