1.Protective effect of intervention with cannabinoid type-2 receptor agonist JWH133 on pulmonary fibrosis in mice.
Xiao WU ; Wen Ting YANG ; Yi Ju CHENG ; Lin PAN ; Yu Quan ZHANG ; Hong Lan ZHU ; Meng Lin ZHANG
Chinese Journal of Internal Medicine 2023;62(7):841-849
		                        		
		                        			
		                        			Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) μg/mg vs. (0.974±0.060) μg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) μg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Pulmonary Fibrosis/pathology*
		                        			;
		                        		
		                        			Cannabinoid Receptor Agonists/metabolism*
		                        			;
		                        		
		                        			Collagen Type I/pharmacology*
		                        			;
		                        		
		                        			Collagen Type III/pharmacology*
		                        			;
		                        		
		                        			Hydroxyproline/pharmacology*
		                        			;
		                        		
		                        			Sodium Chloride/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Lung/pathology*
		                        			;
		                        		
		                        			Cannabinoids/adverse effects*
		                        			;
		                        		
		                        			Bleomycin/metabolism*
		                        			;
		                        		
		                        			Collagen/metabolism*
		                        			;
		                        		
		                        			Inflammation/pathology*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			
		                        		
		                        	
2.Mechanism of protective effect of resveratrol on poor ovarian response in mice.
Jian-Heng HAO ; Yue-Meng ZHAO ; Hai-Jun WANG ; Yu-Xia CAO ; Ying LAN ; Lai-Xi JI
China Journal of Chinese Materia Medica 2023;48(21):5888-5897
		                        		
		                        			
		                        			This study aims to investigate the therapeutic effects and potential mechanisms of resveratrol(Res) on poor ovarian response(POR) in mice. The common target genes shared by Res and POR were predicted by network pharmacology, used for Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and then validated by animal experiments. The mice with regular estrous cycle after screening were randomized into normal, POR, and low-and high-dose(20 and 40 mg·kg~(-1), respectively) Res groups. The normal group was administrated with an equal volume of 0.9% sodium chloride solution by gavage, and the mice in other groups with tripterygium glycosides suspension(50 mg·kg~(-1)) by gavage for 2 weeks. After the modeling, the mice in low-and high-dose Res groups were treated with Res by gavage for 2 weeks, and the mice in normal and POR groups with an equal volume of 0.9% sodium chloride solution by gavage. Ovulation induction and sample collection were carried out on the day following the end of treatment. Vaginal smears were collected for observation of the changes in the estrous cycle, the counting of retrieved oocytes, and the measurement of ovarian wet weight and ovarian index. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of anti-mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in the serum. The ovarian tissue morphology and granulosa cell apoptosis were observed by hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL), respectively. Western blot was employed to determine the protein levels of phosphatidylinositol 3-kinase(PI3K), protein kinase B(AKT), forkhead box O(FOXO) 3a, hypoxia-inducible factor(HIF)-1α, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). A total of 222 common targets shared by Res and POR were collected. GO annotation indicated that these targets were mainly involved in oxidative stress response. KEGG enrichment analysis revealed that Res can intervene in POR via PI3K/AKT, HIF-1, and FOXO signaling pathways. Animal experiments showed that the model group had higher rate of estrous cycle disorders, lower number and poorer morphology of normally developed follicles at all levels, more atretic follicles, higher apoptosis of ovarian granulosa cells, lower number of retrieved oocytes, lower ovarian wet weight and ovarian index, higher serum levels of FSH and LH, lower levels of AMH and E_2, higher expression levels of HIF-1α, FOXO3a and Bax, and lower expression levels of PI3K, AKT, and Bcl-2 in the ovarian tissue than the normal group. Compared with the POR group, low-and high-dose Res decreased the rate of estrous cycle disorders, improved the follicle number and morphology, reduced atretic follicles, promoted the apoptosis of ovarian granulosa cells, increased retrieved oocytes, ovarian wet weight and ovarian index, and lowered serum FSH and LH levels. Moreover, Res down-regulated the expression levels of HIF-1α, FOXO3a and Bax, and up-regulated the expression levels of PI3K, AKT and Bcl-2 in the ovarian tissue. In summary, Res can inhibit apoptosis and mitigate poor ovarian response in mice by regulating the PI3K/AKT/FOXO3a and HIF-1α pathways.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Resveratrol/pharmacology*
		                        			;
		                        		
		                        			bcl-2-Associated X Protein
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Sodium Chloride
		                        			;
		                        		
		                        			Follicle Stimulating Hormone
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2
		                        			
		                        		
		                        	
3.Chronic Intracerebroventricular Infusion of Metformin Inhibits Salt-Sensitive Hypertension via Attenuation of Oxidative Stress and Neurohormonal Excitation in Rat Paraventricular Nucleus.
Xiao-Jing YU ; Ya-Nan ZHAO ; Yi-Kang HOU ; Hong-Bao LI ; Wen-Jie XIA ; Hong-Li GAO ; Kai-Li LIU ; Qing SU ; Hui-Yu YANG ; Bin LIANG ; Wen-Sheng CHEN ; Wei CUI ; Ying LI ; Guo-Qing ZHU ; Zhi-Ming YANG ; Yu-Ming KANG
Neuroscience Bulletin 2019;35(1):57-66
		                        		
		                        			
		                        			Metformin (MET), an antidiabetic agent, also has antioxidative effects in metabolic-related hypertension. This study was designed to determine whether MET has anti-hypertensive effects in salt-sensitive hypertensive rats by inhibiting oxidative stress in the hypothalamic paraventricular nucleus (PVN). Salt-sensitive rats received a high-salt (HS) diet to induce hypertension, or a normal-salt (NS) diet as control. At the same time, they received intracerebroventricular (ICV) infusion of MET or vehicle for 6 weeks. We found that HS rats had higher oxidative stress levels and mean arterial pressure (MAP) than NS rats. ICV infusion of MET attenuated MAP and reduced plasma norepinephrine levels in HS rats. It also decreased reactive oxygen species and the expression of subunits of NAD(P)H oxidase, improved the superoxide dismutase activity, reduced components of the renin-angiotensin system, and altered neurotransmitters in the PVN. Our findings suggest that central MET administration lowers MAP in salt-sensitive hypertension via attenuating oxidative stress, inhibiting the renin-angiotensin system, and restoring the balance between excitatory and inhibitory neurotransmitters in the PVN.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Arterial Pressure
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Hypertension
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Infusions, Intraventricular
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Metformin
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Neurotransmitter Agents
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Paraventricular Hypothalamic Nucleus
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sodium Chloride, Dietary
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
4.Blockade of Endogenous Angiotensin-(1-7) in Hypothalamic Paraventricular Nucleus Attenuates High Salt-Induced Sympathoexcitation and Hypertension.
Xiao-Jing YU ; Yu-Wang MIAO ; Hong-Bao LI ; Qing SU ; Kai-Li LIU ; Li-Yan FU ; Yi-Kang HOU ; Xiao-Lian SHI ; Ying LI ; Jian-Jun MU ; Wen-Sheng CHEN ; Wei CUI ; Guo-Qing ZHU ; Philip J EBENEZER ; Joseph FRANCIS ; Yu-Ming KANG
Neuroscience Bulletin 2019;35(1):47-56
		                        		
		                        			
		                        			Angiotensin (Ang)-(1-7) is an important biologically-active peptide of the renin-angiotensin system. This study was designed to determine whether inhibition of Ang-(1-7) in the hypothalamic paraventricular nucleus (PVN) attenuates sympathetic activity and elevates blood pressure by modulating pro-inflammatory cytokines (PICs) and oxidative stress in the PVN in salt-induced hypertension. Rats were fed either a high-salt (8% NaCl) or a normal salt diet (0.3% NaCl) for 10 weeks, followed by bilateral microinjections of the Ang-(1-7) antagonist A-779 or vehicle into the PVN. We found that the mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma norepinephrine (NE) were significantly increased in salt-induced hypertensive rats. The high-salt diet also resulted in higher levels of the PICs interleukin-6, interleukin-1beta, tumor necrosis factor alpha, and monocyte chemotactic protein-1, as well as higher gp91 expression and superoxide production in the PVN. Microinjection of A-779 (3 nmol/50 nL) into the bilateral PVN of hypertensive rats not only attenuated MAP, RSNA, and NE, but also decreased the PICs and oxidative stress in the PVN. These results suggest that the increased MAP and sympathetic activity in salt-induced hypertension can be suppressed by blockade of endogenous Ang-(1-7) in the PVN, through modulation of PICs and oxidative stress.
		                        		
		                        		
		                        		
		                        			Angiotensin I
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Blood Pressure
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Hypertension
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Paraventricular Hypothalamic Nucleus
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Peptide Fragments
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sodium Chloride, Dietary
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
5.The electrophysiological response of chorda tympani nerve to taste stimuli in rats with conditioned taste aversion to saltiness.
La-Mei LI ; Ying-Ying LIAO ; En-She JIANG
Chinese Journal of Applied Physiology 2019;35(3):239-244
		                        		
		                        			OBJECTIVE:
		                        			To explore the characteristic changes of the peripheral chorda tympanic nerve (CT) electrophysiological responses to salty stimulus and other taste stimuli in rats with the conditioned taste aversion to saltiness.
		                        		
		                        			METHODS:
		                        			Fourteen adult SD male rats were divided into a conditioned taste aversion to salty group (CTA) and a control group (Ctrl) (n=7/group). On the first day of the experiment, rats were given a 0.1 mol/L NaCl intake for 30 min, then, the rats in CTA and Ctrl groups were injected intraperitoneally with 2 ml of 0.15 mol/L LiCl and the same amount of saline respectively. On day 2, 3 and 4, the 30 min consumption of NaCl and distilled water was measured for both groups of rats. On the 4th day after the behavioral test of that day, CT electrophysiological recording experiments were performed on CTA rats and control rats.
		                        		
		                        			RESULTS:
		                        			Compared with the rats in Ctrl group, the electrophysiological characteristics of CT in CTA group rats did not change significantly the responses to the series of NaCl and other four basic taste stimuli (P>0.05). The amiloride, the epithelial sodium channel blocker, strongly inhibited the response of CT to NaCl in CTA and Ctrl group rats (P<0.01).
		                        		
		                        			CONCLUSION
		                        			The electrophysiological responses of CT to various gustatory stimuli do not significantly change in rats after the establishment of conditional taste aversion to the saltiness.
		                        		
		                        		
		                        		
		                        			Amiloride
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chorda Tympani Nerve
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Conditioning, Classical
		                        			;
		                        		
		                        			Electrophysiological Phenomena
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Sodium Chloride
		                        			;
		                        		
		                        			Taste
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
6.Antiendotoxin effect of Jinhuaqingre capsules.
Jiafu HOU ; Leilei WU ; Yuting CAI ; Changjiu GAO ; Jindan AN ; Zhongcheng YU
Journal of Zhejiang University. Medical sciences 2017;46(1):74-79
		                        		
		                        			
		                        			                    
To investigate the anti-pyretic and anti-endotoxin effect of Chinese herb medicine Jinhuaqingre capsules.Thirty healthy male New Zealand rabbits with lipopolysaccharide-induced fever were divided into 5 groups (6 rabbits in each): animals in model group were given normal saline by gavage, animals in positive control group were given aspirin (0.2 g/kg), and animals in Jinhuaqingre groups were given Jinhuaqingre capsules 6.0, 3.0 or 1.5 g/kg, respectively. The changes in body temperature of rabbits were observed. Fifty healthy Kunming mice were divided into 5 groups (10 mice in each): mice in model group were given normal saline by gavage, mice in positive control group were given aspirin (0.2 g/kg), and those in Jinhuaqingre groups were given Jinhuaqingre capsules 6.0, 3.0, 1.5 g/kg, respectively. Matrix coloration method was used to detect the degradation rate of endotoxin in mice.The body temperature in rabbits of high and medium dose Jinhuaqingre capsule groups declined significantly 60 min after drug administration, and the temperature of high-dose group returned to the baseline after 300 min; while the body temperature of low-dose group started to decline at 180 min after drug administration. The endotoxin degradation rates in mice of high, medium and low dose groups was (56.73±3.12)%, (47.23±1.77)% and (21.08±2.30)% at 30 min after drug administration; those were (82.76±1.00)%, (64.75±1.77)% and (38.21±1.57)% at 60 min after drug administration, respectively.Chinese herb medicine Jinhuanigre capsules have anti-pyretic and anti-endotoxin effects, which may provide a new option for the treatment of heat-toxin syndrome.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antitoxins
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Aspirin
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			Fever
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Sodium Chloride
		                        			;
		                        		
		                        			therapeutic use
		                        			
		                        		
		                        	
7.Effects of seed priming on physiology of seed germination and seeding growth of Marsdenia tenacissima under NaCl stress.
Xue-feng XIAO ; Li LIU ; Qiao-sheng GUO ; Chao LI ; Ping-li WANG ; Sheng-chao YANG ; Yue-yu HANG
China Journal of Chinese Materia Medica 2015;40(2):218-225
		                        		
		                        			
		                        			To offer the reference and method for salt damage in the cultivation of Marsdenia tenacissima, the seeds of M. tenacissima collected from Maguan city ( Yunnan province) were taken as the test materials to study the effects of different priming materials on improving germination and growth under high-level salt stress condition. Four different treatments, which were GA3, KNO3-KH2PO4, PEG-6000, NaCl, combined with ANOVA were applied to test the performance of germination energy, germination percentage, germination index, MDA, SOD, and CAT. The results showed that the seed germination was obviously inhibited under salt stress and the soaked seeds with different priming materials could alleviate the damage of salt stress. Under these treatments, the activities of SOD, CAT the content of soluble protein significantly increased. While the content of MDA significantly decreased. The maximum index was obtained when treated with 1.20% KNO3-KH2PO4, the germination percentage increased from 52.67% to 87.33% and the activity of SOD increased from 138.01 to 219.44 respectively. Comparing with the treatment of 1.20% KNO3-KH2PO4, the germination percentage of treating with 300 mg x L(-1) GA3 increased from 52.67% to 80.67%, while the activity of SOD increased from 138.01 to 444.61.
		                        		
		                        		
		                        		
		                        			Germination
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Marsdenia
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Nitrates
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Polyethylene Glycols
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Potassium Compounds
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Seeds
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Sodium Chloride
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Stress, Physiological
		                        			;
		                        		
		                        			Xanthones
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
8.Study on relieving effects of exogenous SNP, Spd on Belamcanda chinensis under salt-alkalline stress.
Meng-Ping XU ; Ping HE ; Cai-Xu DUAN ; Mou YANG
China Journal of Chinese Materia Medica 2014;39(23):4553-4558
		                        		
		                        			
		                        			The study is aimed to provide the theoretical basis for exploiting and utilization of salt-alkaline soil and cultivating Belamcanda chinensis. In this study, we exerted exogenous substances SNP, Spd to relieve the damage of the mixing salt-alkaline stress on B. chinensis seedling which is NaCl, Na2SO4, NaHCO3 and Na2CO3 four kinds of salt molar ratio of 9: 1: 9: 1, salt concentration of 100 mmol x L(-1). The result illustrated that high pH stress is a major factor caused the salt-alkaline stress, the interaction between time and the concentration of each, treatment was observed, what is more, there are synergies between the salt and alkali stress. The content of B. chinensis seedling leaves' membrane peroxidation index (MDA, O2-*) and metabolites (soluble protein, soluble sugars, organic acids) are showing an upward trend in varying degrees under 100 mmol x L(-1) salt-alkaline stress. It is effective to reduce the content of MDA and O2-*. and improve the levels of metabolites, in which the SNP (0.05 mmol x L(-1)) and Spd (0.5 mmol x L(-1)) to alleviate damage effects is the best. Therefore we can hold the conclusion that SNP and Spd can effectively mitigate the damage of B. chinensis seedling on salt-alkaline stress, improve the resistance ability of B. chinensis seedling which can provide the scientific basis for the utilization of salt-alkaline soil, and the cultivation of B. chinensis.
		                        		
		                        		
		                        		
		                        			Alkalies
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Iridaceae
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Leaves
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Seedlings
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Sodium Chloride
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Effect of exogenous calcium on seed germination and seedling physiological characteristics of Lycium ruthenium.
Duo-Hong HAN ; Shan-Ji LI ; En-Jun WANG ; Hong-Mei MENG ; Ye CHEN ; Yong ZHANG
China Journal of Chinese Materia Medica 2014;39(1):34-39
OBJECTIVEIn order to get the method for improving the salt resistance of Lycium ruthenium seeds and seedlings under NaCl stress, the seed germination and physiological characteristics of L. ruthenium seedlings was studied.
METHODSeveral physiological indexes of L. ruthenium seeds under NaCl stress, such as the germination rate (Gr), germination vigor (Gv), germination index (Gi), vigor index (Vi), and relative salt damage rate were measured. Other indexes of the seedlings like relative water contents (RWC) , chlorophyll contents, soluble protein contents, electrolyte leakage, the contents of malondialdehyde (MDA), and peroxidase (POD) were also measured.
RESULTNaCl at lower concentration could promote the seed germination but inhibit the seed germination at higher concentration. After the treatment by CaCl2 at the different concentrations, all germination indexes were increased. With the increase of salt concentration, the relative water contents and the contents of chlorophyll were decreased, the content of MDA and electrolyte leakage were increased. The change trend of POD activity showed the first increase and then decrease with the increase of salt concentration, which was similar to that of the soluble protein. After the treatment by CaCl2, relative water contents, chlorophyll and POD activities were decreased more slowly, and also electrolyte leakage and MDA contents increased slowly.
CONCLUSIONThe CaCl2 could significantly alleviate the damages to the seeds and seedlings of L. ruthenium under NaCl stress, and promote the salt resistance to the seeds and seedlings of L. ruthenium.
Calcium ; pharmacology ; Germination ; drug effects ; Lycium ; drug effects ; metabolism ; physiology ; Seedlings ; drug effects ; metabolism ; physiology ; Seeds ; drug effects ; metabolism ; physiology ; Sodium Chloride ; metabolism
10.Effect of inhibiting brain reactive oxygen species on sympathetic nerve activity in DOCA-salt hypertensive rats.
Journal of Southern Medical University 2014;34(11):1632-1636
OBJECTIVETo investigate whether brain reactive oxygen species mediate sympathoexcitation and arterial pressure elevation in DOCA-salt hypertensive rats.
METHODSDOCA-salt hypertensive model was established in male SD rats by subcutaneous injection of DOCA after uninephrectomy and drinking 1% NaCl solution for 4 weeks. The baseline mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in the rats under mild anesthesia, and MAP changes following intravenous hexamethonium injection were observed. The responses of MAP, HR and RSNA to intracerebroventricular administration of tempol (20 µmol/L in 10 µl) were evaluated; plasma NE level was measured with ELISA, and ROS level and NAD(P)H oxidase activity in the hypothalamus were detected using chemiluminescence assay.
RESULTSMAP and plasma NE levels were significantly increased in DOCA-salt rats as compared with those in the control group (P<0.01). In DOCA-salt hypertensive rats, intravenous hexamethonium injection induced a blood pressure reduction 240% of that in control rats, and significantly increased the levels of superoxide anion and NAD(P)H oxidase activity in the hypothalamus. Intracerebroventricular microinjection of tempol also resulted in more significant changes of MAP, HR and RSNA in DOCA-salt rats than in the control group (P<0.01).
CONCLUSIONSympathoexcitation due to increased NAD(P)H oxidase-derived ROS levels in the hypothalamus may mediate arterial pressure elevation in DOCA-salt hypertensive rats.
Animals ; Antioxidants ; Arterial Pressure ; Blood Pressure ; Brain ; metabolism ; Cyclic N-Oxides ; pharmacology ; Desoxycorticosterone ; Desoxycorticosterone Acetate ; Disease Models, Animal ; Heart Rate ; Hypertension ; Kidney ; innervation ; Male ; NADPH Oxidases ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; metabolism ; Sodium Chloride ; Spin Labels ; Superoxides ; metabolism ; Sympathetic Nervous System
            
Result Analysis
Print
Save
E-mail