1.The mutual interaction of TRPC5 channel with polycystin proteins
Misun KWAK ; Hana KANG ; Jinhyeong KIM ; Yejun HONG ; Byeongseok JEONG ; Jongyun MYEONG ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2025;29(1):93-108
PKD1 regulates a number of cellular processes through the formation of complexes with the PKD2 ion channel or transient receptor potential classical (TRPC) 4 in the endothelial cells. Although Ca 2+ modulation by polycystins has been reported between PKD1 and TRPC4 channel or TRPC1 and PKD2, the function with TRPC subfamily regulated by PKD2 has remained elusive. We confirmed TRPC4 or TRPC5 channel activation via PKD1 by modulating G-protein signaling without change in TRPC4/C5 translocation. The activation of TRPC4/C5 channels by intracellular 0.2 mM GTPγS was not significantly different regardless of the presence or absence of PKD1. Furthermore, the C-terminal fragment (CTF) of PKD1 did not affect TRPC4/C5 activity, likely due to the loss of the N-terminus that contains the G-protein coupled receptor proteolytic site (GPS). We also investigated whether TRPC1/C4/C5 can form a heterodimeric channel with PKD2, despite PKD2 being primarily retained in the endoplasmic reticulum (ER). Our findings show that PKD2 is targeted to the plasma membrane, particularly by TRPC5, but not by TRPC1. However, PKD2 did not coimmunoprecipitate with TRPC5 as well as with TRPC1. PKD2 decreased both basal and La 3+ -induced TRPC5 currents but increased M 3 R-mediated TRPC5 currents. Interestingly, PKD2 increased STAT3 phosphorylation with TRPC5 and decreased STAT1 phosphorylation with TRPC1. To be specific, PKD2 and TRPC1 compete to bind with TRPC5 to modulate intracellular Ca 2+ signaling and reach the plasma membrane. This interaction suggests a new therapeutic target in TRPC5 channels for improving vascular endothelial function in polycystic kidney disease.
2.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
3.Effects of hepatic fibrosis on the quantification of hepatic steatosis using the controlled attenuation parameter in patients with chronic hepatitis B
Hee Jun PARK ; Hyo Jeong KANG ; So Yeon KIM ; Seonghun YOON ; Seunghee BAEK ; In Hye SONG ; Hyeon Ji JANG ; Jong Keon JANG
Ultrasonography 2025;44(1):83-91
Purpose:
This study assessed the impact of hepatic fibrosis on the diagnostic performance of the controlled attenuation parameter (CAP) in quantifying hepatic steatosis in patients with chronic hepatitis B (CHB).
Methods:
CHB patients who underwent liver stiffness measurement (LSM) and CAP assessment using transient elastography before liver resection between 2019 and 2022 were retrospectively evaluated. Clinical data included body mass index (BMI) and laboratory parameters. The histologically determined hepatic fat fraction (HFF) and fibrosis stages were reviewed by pathologists blinded to clinical and radiologic data. The Pearson correlation coefficient between CAP and HFF was calculated. The diagnostic performance of CAP for significant hepatic steatosis (HFF ≥10%) was assessed using areas under the receiver operating curve (AUCs), stratified by fibrosis stages (F0-1 vs. F2-4). Factors significantly associated with CAP were determined by univariable and multivariable linear regression analyses.
Results:
Among 399 CHB patients (median age 59 years; 306 men), 16.3% showed significant steatosis. HFF ranged from 0% to 60%. Of these patients, 9.8%, 19.8%, 29.3%, and 41.1% had fibrosis stages F0-1, F2, F3, and F4, respectively. CAP positively correlated with HFF (r=0.445, P<0.001). The AUC of CAP for diagnosing significant steatosis was 0.786 (95% confidence interval [CI], 0.726 to 0.845) overall, and significantly lower in F2-4 (0.772; 95% CI, 0.708 to 0.836) than in F0-1 (0.924; 95% CI, 0.835 to 1.000) (P=0.006). Multivariable analysis showed that BMI (P<0.001) and HFF (P<0.001) significantly affected CAP, whereas LSM and fibrosis stages did not.
Conclusion
CAP evaluations of significant hepatic steatosis are less reliable in CHB patients with significant or more advanced (F2-4) than with no or mild (F0-1) fibrosis.
4.Development of a Long-Acting Follicle-Stimulating Hormone Using Serum Albumin Fab-Associated Technology for Female Infertility
Daham KIM ; Yoon Hee CHO ; Min Jeong KANG ; So Jeong LEE ; Soohyun LEE ; Bo Hyon YUN ; Hyunjin CHI ; Jeongsuk AN ; Kyungsun LEE ; Jaekyu HAN ; Susan CHI ; Moo Young SONG ; Sang-Hoon CHA ; Eun Jig LEE
Endocrinology and Metabolism 2025;40(1):146-155
Background:
Recombinant human follicle-stimulating hormone (rhFSH) is commonly used to treat female infertility, but its short half-life necessitates multiple doses. Even corifollitropin alfa, with an extended half-life, requires supplementary injections of rhFSH after 7 days. This study aimed to develop and evaluate a long-acting follicle-stimulating hormone (FSH) formulation using anti-serum albumin Fab-associated (SAFA) technology to avoid additional injections and enhance ovarian function.
Methods:
SAFA-FSH was synthesized using a Chinese hamster ovary expression system. Its biological efficacy was confirmed through assays measuring its ability to stimulate cyclic adenosine monophosphate (cAMP) production, estradiol synthesis, and the expression of human cytochrome P450 family 19 subfamily A member 1 (hCYP19α1) and human steroidogenic acute regulatory protein (hSTAR) in human ovarian granulosa (KGN) cells. To evaluate the effects of SAFA-FSH, we compared its impact on serum estradiol levels and ovarian weight increase with that of rhFSH in Sprague-Dawley (SD) rats using the modified Steelman-Pohley test.
Results:
The results indicated that SAFA-FSH induces cAMP synthesis in KGN cells and upregulates the expression of hCYP19α1 and hSTAR in a dose-dependent manner. Female SD rats, aged 21 days, receiving daily subcutaneous human chorionic gonadotropin injections for 5 days exhibited a significant increase in serum estradiol levels and ovarian weight when administered SAFA-FSH on the first day or when given nine injections of rhFSH over 5 days. Notably, the group receiving SAFA-FSH on the first and third days demonstrated an even greater rise in serum estradiol levels and ovarian weight.
Conclusion
These findings suggest that SAFA-FSH presents a promising alternative to current rhFSH treatments for female infertility. However, further research is essential to thoroughly assess its safety and efficacy in clinical contexts.
5.The mutual interaction of TRPC5 channel with polycystin proteins
Misun KWAK ; Hana KANG ; Jinhyeong KIM ; Yejun HONG ; Byeongseok JEONG ; Jongyun MYEONG ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2025;29(1):93-108
PKD1 regulates a number of cellular processes through the formation of complexes with the PKD2 ion channel or transient receptor potential classical (TRPC) 4 in the endothelial cells. Although Ca 2+ modulation by polycystins has been reported between PKD1 and TRPC4 channel or TRPC1 and PKD2, the function with TRPC subfamily regulated by PKD2 has remained elusive. We confirmed TRPC4 or TRPC5 channel activation via PKD1 by modulating G-protein signaling without change in TRPC4/C5 translocation. The activation of TRPC4/C5 channels by intracellular 0.2 mM GTPγS was not significantly different regardless of the presence or absence of PKD1. Furthermore, the C-terminal fragment (CTF) of PKD1 did not affect TRPC4/C5 activity, likely due to the loss of the N-terminus that contains the G-protein coupled receptor proteolytic site (GPS). We also investigated whether TRPC1/C4/C5 can form a heterodimeric channel with PKD2, despite PKD2 being primarily retained in the endoplasmic reticulum (ER). Our findings show that PKD2 is targeted to the plasma membrane, particularly by TRPC5, but not by TRPC1. However, PKD2 did not coimmunoprecipitate with TRPC5 as well as with TRPC1. PKD2 decreased both basal and La 3+ -induced TRPC5 currents but increased M 3 R-mediated TRPC5 currents. Interestingly, PKD2 increased STAT3 phosphorylation with TRPC5 and decreased STAT1 phosphorylation with TRPC1. To be specific, PKD2 and TRPC1 compete to bind with TRPC5 to modulate intracellular Ca 2+ signaling and reach the plasma membrane. This interaction suggests a new therapeutic target in TRPC5 channels for improving vascular endothelial function in polycystic kidney disease.
6.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
7.Effects of hepatic fibrosis on the quantification of hepatic steatosis using the controlled attenuation parameter in patients with chronic hepatitis B
Hee Jun PARK ; Hyo Jeong KANG ; So Yeon KIM ; Seonghun YOON ; Seunghee BAEK ; In Hye SONG ; Hyeon Ji JANG ; Jong Keon JANG
Ultrasonography 2025;44(1):83-91
Purpose:
This study assessed the impact of hepatic fibrosis on the diagnostic performance of the controlled attenuation parameter (CAP) in quantifying hepatic steatosis in patients with chronic hepatitis B (CHB).
Methods:
CHB patients who underwent liver stiffness measurement (LSM) and CAP assessment using transient elastography before liver resection between 2019 and 2022 were retrospectively evaluated. Clinical data included body mass index (BMI) and laboratory parameters. The histologically determined hepatic fat fraction (HFF) and fibrosis stages were reviewed by pathologists blinded to clinical and radiologic data. The Pearson correlation coefficient between CAP and HFF was calculated. The diagnostic performance of CAP for significant hepatic steatosis (HFF ≥10%) was assessed using areas under the receiver operating curve (AUCs), stratified by fibrosis stages (F0-1 vs. F2-4). Factors significantly associated with CAP were determined by univariable and multivariable linear regression analyses.
Results:
Among 399 CHB patients (median age 59 years; 306 men), 16.3% showed significant steatosis. HFF ranged from 0% to 60%. Of these patients, 9.8%, 19.8%, 29.3%, and 41.1% had fibrosis stages F0-1, F2, F3, and F4, respectively. CAP positively correlated with HFF (r=0.445, P<0.001). The AUC of CAP for diagnosing significant steatosis was 0.786 (95% confidence interval [CI], 0.726 to 0.845) overall, and significantly lower in F2-4 (0.772; 95% CI, 0.708 to 0.836) than in F0-1 (0.924; 95% CI, 0.835 to 1.000) (P=0.006). Multivariable analysis showed that BMI (P<0.001) and HFF (P<0.001) significantly affected CAP, whereas LSM and fibrosis stages did not.
Conclusion
CAP evaluations of significant hepatic steatosis are less reliable in CHB patients with significant or more advanced (F2-4) than with no or mild (F0-1) fibrosis.
8.The mutual interaction of TRPC5 channel with polycystin proteins
Misun KWAK ; Hana KANG ; Jinhyeong KIM ; Yejun HONG ; Byeongseok JEONG ; Jongyun MYEONG ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2025;29(1):93-108
PKD1 regulates a number of cellular processes through the formation of complexes with the PKD2 ion channel or transient receptor potential classical (TRPC) 4 in the endothelial cells. Although Ca 2+ modulation by polycystins has been reported between PKD1 and TRPC4 channel or TRPC1 and PKD2, the function with TRPC subfamily regulated by PKD2 has remained elusive. We confirmed TRPC4 or TRPC5 channel activation via PKD1 by modulating G-protein signaling without change in TRPC4/C5 translocation. The activation of TRPC4/C5 channels by intracellular 0.2 mM GTPγS was not significantly different regardless of the presence or absence of PKD1. Furthermore, the C-terminal fragment (CTF) of PKD1 did not affect TRPC4/C5 activity, likely due to the loss of the N-terminus that contains the G-protein coupled receptor proteolytic site (GPS). We also investigated whether TRPC1/C4/C5 can form a heterodimeric channel with PKD2, despite PKD2 being primarily retained in the endoplasmic reticulum (ER). Our findings show that PKD2 is targeted to the plasma membrane, particularly by TRPC5, but not by TRPC1. However, PKD2 did not coimmunoprecipitate with TRPC5 as well as with TRPC1. PKD2 decreased both basal and La 3+ -induced TRPC5 currents but increased M 3 R-mediated TRPC5 currents. Interestingly, PKD2 increased STAT3 phosphorylation with TRPC5 and decreased STAT1 phosphorylation with TRPC1. To be specific, PKD2 and TRPC1 compete to bind with TRPC5 to modulate intracellular Ca 2+ signaling and reach the plasma membrane. This interaction suggests a new therapeutic target in TRPC5 channels for improving vascular endothelial function in polycystic kidney disease.
9.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
10.Effects of hepatic fibrosis on the quantification of hepatic steatosis using the controlled attenuation parameter in patients with chronic hepatitis B
Hee Jun PARK ; Hyo Jeong KANG ; So Yeon KIM ; Seonghun YOON ; Seunghee BAEK ; In Hye SONG ; Hyeon Ji JANG ; Jong Keon JANG
Ultrasonography 2025;44(1):83-91
Purpose:
This study assessed the impact of hepatic fibrosis on the diagnostic performance of the controlled attenuation parameter (CAP) in quantifying hepatic steatosis in patients with chronic hepatitis B (CHB).
Methods:
CHB patients who underwent liver stiffness measurement (LSM) and CAP assessment using transient elastography before liver resection between 2019 and 2022 were retrospectively evaluated. Clinical data included body mass index (BMI) and laboratory parameters. The histologically determined hepatic fat fraction (HFF) and fibrosis stages were reviewed by pathologists blinded to clinical and radiologic data. The Pearson correlation coefficient between CAP and HFF was calculated. The diagnostic performance of CAP for significant hepatic steatosis (HFF ≥10%) was assessed using areas under the receiver operating curve (AUCs), stratified by fibrosis stages (F0-1 vs. F2-4). Factors significantly associated with CAP were determined by univariable and multivariable linear regression analyses.
Results:
Among 399 CHB patients (median age 59 years; 306 men), 16.3% showed significant steatosis. HFF ranged from 0% to 60%. Of these patients, 9.8%, 19.8%, 29.3%, and 41.1% had fibrosis stages F0-1, F2, F3, and F4, respectively. CAP positively correlated with HFF (r=0.445, P<0.001). The AUC of CAP for diagnosing significant steatosis was 0.786 (95% confidence interval [CI], 0.726 to 0.845) overall, and significantly lower in F2-4 (0.772; 95% CI, 0.708 to 0.836) than in F0-1 (0.924; 95% CI, 0.835 to 1.000) (P=0.006). Multivariable analysis showed that BMI (P<0.001) and HFF (P<0.001) significantly affected CAP, whereas LSM and fibrosis stages did not.
Conclusion
CAP evaluations of significant hepatic steatosis are less reliable in CHB patients with significant or more advanced (F2-4) than with no or mild (F0-1) fibrosis.

Result Analysis
Print
Save
E-mail