1.National experts consensus on clinical diagnosis and treatment of inhalation injury (2018 version).
Burn and Trauma Branch of Chinese Geriatrics Society ; F GUO ; Y S ZHU ; J HUANG ; Y H WU ; Z F SUN ; X B XIA ; X B FU
Chinese Journal of Burns 2018;34(11):E004-E004
Inhalation injury is caused by inhalation of heat, toxic or irritating gases which lead to respiratory and pulmonary parenchyma damage. At present, the clinical understanding about it is still limited and lack of effective diagnosis and treatment standard. Based on the experience of diagnosis and treatment of domestic inhalation injury, combined with reports of international researches, criteria (expert consensus) for inhalation injury were systematically discussed from pathological and pathophysiological changes, clinical diagnosis and evaluation, and clinical treatment, which provides reference for clinical diagnosis and treatment of patients inflicted with inhalation injury.
Burns, Inhalation
;
Consensus
;
Humans
;
Lung
;
Practice Guidelines as Topic
;
Smoke Inhalation Injury
;
diagnosis
;
therapy
2.National experts consensus on tracheotomy and intubation for burn patients (2018 version).
Burn and Trauma Branch of Chinese Geriatrics Society ; J MING ; P LEI ; J L DUAN ; J H TAN ; H P LOU ; D Y DI ; Deyun WANG
Chinese Journal of Burns 2018;34(11):782-785
Airway edema, stenosis, obstruction and even asphyxia are easy to occur in patients with extensive burn, deep burn of head, face, and neck area, inhalation injuries, etc., which threaten life. Timely tracheotomy and intubation is an important treatment measure, but lack of knowledge and improper handling in some hospitals resulted in airway obstruction. The technique of percutaneous tracheotomy and intubation provides convenience for emergency treatment of critical burns and mass burn. The Burn and Trauma Branch of Chinese Geriatrics Society organized some experts in China to discuss the indications, timing, methods, extubation, and precautions of tracheotomy and intubation for burn patients. The (2018 ) .
Airway Obstruction
;
prevention & control
;
Burn Units
;
Burns
;
complications
;
therapy
;
China
;
Consensus
;
Humans
;
Intubation, Intratracheal
;
methods
;
Practice Guidelines as Topic
;
standards
;
Smoke Inhalation Injury
;
therapy
;
Tracheotomy
;
methods
3.National experts consensus on clinical diagnosis and treatment of inhalation injury (2018 version).
Burn and Trauma Branch of Chinese Geriatrics Society ; F GUO ; Y S ZHU ; J HUANG ; Y H WU ; Z F SUN ; X B XIA ; Xiaobing FU
Chinese Journal of Burns 2018;34(11):770-775
Inhalation injury is caused by inhalation of heat, toxic or irritating gases which lead to respiratory and pulmonary parenchyma damage. At present, the clinical understanding about it is still limited and lack of effective diagnosis and treatment standard. Based on the experience of diagnosis and treatment of domestic inhalation injury, combined with reports of international researches, criteria (expert consensus) for inhalation injury were systematically discussed from pathological and pathophysiological changes, clinical diagnosis and evaluation, and clinical treatment, which provides reference for clinical diagnosis and treatment of patients inflicted with inhalation injury.
Burns, Inhalation
;
Consensus
;
Humans
;
Lung
;
Smoke Inhalation Injury
;
diagnosis
;
therapy
4.Management of Critical Burn Injuries: Recent Developments.
Korean Journal of Critical Care Medicine 2017;32(1):9-21
BACKGROUND: Burn injury and its subsequent multisystem effects are commonly encountered by acute care practitioners. Resuscitation is the major component of initial burn care and must be managed to restore and preserve vital organ function. Later complications of burn injury are dominated by infection. Burn centers are often called to manage problems related to thermal injury, including lightning and electrical injuries. METHODS: A selected review is provided of key management concepts as well as of recent reports published by the American Burn Association. RESULTS: The burn-injured patient is easily and frequently over resuscitated, with ensuing complications that include delayed wound healing and respiratory compromise. A feedback protocol designed to limit the occurrence of excessive resuscitation has been proposed, but no new “gold standard” for resuscitation has replaced the venerated Parkland formula. While new medical therapies have been proposed for patients sustaining inhalation injury, a paradigm-shifting standard of medical therapy has not emerged. Renal failure as a specific contributor to adverse outcome in burns has been reinforced by recent data. Of special problems addressed in burn centers, electrical injuries pose multisystem physiologic challenges and do not fit typical scoring systems. CONCLUSION: Recent reports emphasize the dangers of over resuscitation in the setting of burn injury. No new medical therapy for inhalation injury has been generally adopted, but new standards for description of burn-related infections have been presented. The value of the burn center in care of the problems of electrical exposure, both manmade and natural, is demonstrated in recent reports.
Burn Units
;
Burns*
;
Humans
;
Inhalation
;
Lightning
;
Renal Insufficiency
;
Resuscitation
;
Smoke Inhalation Injury
;
Wound Healing
5.Early Predictors of Critical Cases for the Patients Who Visited Emergency Department due to Gas Inhalation: Early Predictors of Severity in Gas Inhalation.
Jung Sung HWANG ; Wook Jin CHOI ; Sun Hyu KIM ; Byung Ho CHOI ; Hye Ji LEE ; Ryeok AHN ; Eun Seog HONG
Journal of the Korean Society of Emergency Medicine 2017;28(5):475-483
PURPOSE: To define early predictors of critical cases involving patients who visited the emergency department (ED) due to gas inhalation, with the goal of identifying patients who require intensive monitoring and treatment. METHODS: The retrospective study was carried out for patients who visited the ED at Ulsan University Hospital due to gas inhalation from March 2014 to February 2016. General demographics, mechanism of accident, critical symptoms, vital signs, blood lab test results, severity, and clinical manifestation were investigated. Patients were divided into a critical group and non-critical group, and predictors of critical cases were investigated by comparing both groups. RESULTS: Of the 180 patients, 26 patients were in the critical group. In this group, more patients displayed altered mentality and cardiac arrest (both p<0.001). The critical group also showed significantly higher fractions for low-blood pressure (systolic blood pressure<90 mmHg; p<0.001), number of critical symptoms (p<0.001), transport by emergency medical services (p=0.003), and consultation involving other departments (p<0.001). Patients in the critical group showed higher Korean Triage and Acuity Scale (KTAS) level (p<0.001), lactate value (p=0.001), and carboxy-hemoglobin value (p=0.017) as well as older age (p=0.001), lower pH (p=0.001), and HCO₃⁻ value (p<0.001). Multiple regression analysis revealed that predictors of critical cases were older age and higher KTAS level (both p<0.001). CONCLUSION: Patients admitted to the ED for treatment of gas inhalation, who were older and had a higher KTAS level, require intensive monitoring and treatment.
Blood Gas Analysis
;
Demography
;
Emergencies*
;
Emergency Medical Services
;
Emergency Medicine
;
Emergency Service, Hospital*
;
Heart Arrest
;
Humans
;
Hydrogen-Ion Concentration
;
Inhalation*
;
Lactic Acid
;
Predictive Value of Tests
;
Retrospective Studies
;
Smoke Inhalation Injury
;
Triage
;
Ulsan
;
Vital Signs
6.Management of Critical Burn Injuries: Recent Developments
The Korean Journal of Critical Care Medicine 2017;32(1):9-21
BACKGROUND: Burn injury and its subsequent multisystem effects are commonly encountered by acute care practitioners. Resuscitation is the major component of initial burn care and must be managed to restore and preserve vital organ function. Later complications of burn injury are dominated by infection. Burn centers are often called to manage problems related to thermal injury, including lightning and electrical injuries. METHODS: A selected review is provided of key management concepts as well as of recent reports published by the American Burn Association. RESULTS: The burn-injured patient is easily and frequently over resuscitated, with ensuing complications that include delayed wound healing and respiratory compromise. A feedback protocol designed to limit the occurrence of excessive resuscitation has been proposed, but no new “gold standard” for resuscitation has replaced the venerated Parkland formula. While new medical therapies have been proposed for patients sustaining inhalation injury, a paradigm-shifting standard of medical therapy has not emerged. Renal failure as a specific contributor to adverse outcome in burns has been reinforced by recent data. Of special problems addressed in burn centers, electrical injuries pose multisystem physiologic challenges and do not fit typical scoring systems. CONCLUSION: Recent reports emphasize the dangers of over resuscitation in the setting of burn injury. No new medical therapy for inhalation injury has been generally adopted, but new standards for description of burn-related infections have been presented. The value of the burn center in care of the problems of electrical exposure, both manmade and natural, is demonstrated in recent reports.
Burn Units
;
Burns
;
Humans
;
Inhalation
;
Lightning
;
Renal Insufficiency
;
Resuscitation
;
Smoke Inhalation Injury
;
Wound Healing
7.Advances in the research of pathogenesis and treatment of severe smoke inhalation injury.
Shengjuan FENG ; Chiyu JIA ; Zhen LIU ; Xiaowu LYU
Chinese Journal of Burns 2016;32(2):122-125
Among the fire victims, respiratory tract injury resulted from smoke inhalation is the major cause of death. Particulate substances in smoke, toxic and harmful gas, and chemical substances act together would rapidly induce the occurrence of dramatic pathophysiologic reaction in the respiratory tract, resulting in acute injury to the respiratory tract, thus inducing serious injury to it and acute respiratory distress syndrome, leading to death of the victims. In recent years, the pathophysiologic mechanism of severe smoke inhalation injury has been gradually clarified, thus appreciable advances in its treatment have been achieved. This paper is a brief review of above-mentioned aspects.
Burns, Inhalation
;
pathology
;
physiopathology
;
Fires
;
Humans
;
Respiratory Distress Syndrome, Adult
;
physiopathology
;
Smoke
;
adverse effects
;
Smoke Inhalation Injury
;
pathology
;
physiopathology
8.Effects of high frequency oscillatory ventilation combined with incremental positive end-expiratory pressure on myocardial ischemia and hypoxia and apoptosis of cardiomyocytes in dogs with smoke inhalation injury.
Jie LUO ; Guanghua GUO ; Email: GUOGH2000@HOTMAIL.COM. ; Feng ZHU ; Zhonghua FU ; Xincheng LIAO ; Mingzhuo LIU
Chinese Journal of Burns 2015;31(4):259-263
OBJECTIVETo compare the effects of high frequency oscillatory ventilation (HFOV) combined with incremental positive end-expiratory pressure (IP) and those of pure HFOV on myocardial ischemia and hypoxia and apoptosis of cardiomyocytes in dogs with smoke inhalation injury.
METHODSTwelve healthy male dogs were divided into group HFOV and group HFOV+IP according to the random number table, with 6 dogs in each group. After being treated with conventional mechanical ventilation, dogs in both groups were inflicted with severe smoke inhalation injury, and then they received corresponding ventilation for 8 hours respectively. After treatment, the blood samples were collected from heart to determine the activity of creatine kinase-MB (CK-MB) and lactate dehydrogenase 1 (LDH1) in plasma. The dogs were sacrificed later. Myocardium was obtained for determination of content of TNF-α per gram myocardium by ELISA, apoptotic rate of cardiomyocytes by flow cytometer, degree of hypoxia with HE staining, and qualitative and quantitative expression of actin (denoted as integral absorbance value) with streptavidin-biotin-peroxidase staining. Data were processed with t test. The relationship between the content of TNF-α per gram myocardium and the apoptotic rate of cardiomyocytes was assessed by Spearman linear correlation analysis.
RESULTS(1) After treatment for 8 h, the values of activity of CK-MB and LDH1 in plasma of dogs in group HFOV+IP were respectively (734 ± 70) and (182 ± 15) U/L, which were both lower than those in group HFOV [(831 ± 79) and (203 ± 16) U/L, with t values respectively 2.25 and 2.35, P values below 0.05]. (2) Compared with that in group HFOV [(0.060 ± 0.018) µg], the content of TNF-α per gram myocardium of dogs in group HFOV+IP after treatment for 8 h was decreased significantly [(0.040 ± 0.011) µg, t=2.32, P<0.05]. (3) Compared with that in group HFOV [(33.4 ± 2.2)%], the apoptotic rate of cardiomyocytes of dogs in group HFOV+IP after treatment for 8 h was significantly decreased [(28.2 ± 3.4)%, t=3.15, P<0.05]. There was a positive correlation between the content of TNF-α per gram myocardium and the apoptotic rate of cardiomyocytes (r=0.677, P<0.05). (4) HE staining showed that myocardial fibers of dogs in both groups were arranged in wave shape in different degrees, indicating there was myocardial hypoxia in different degrees. Compared with that of group HFOV, the degree of hypoxia in group HFOV+IP was slighter. (5) The results of immunohistochemical staining showed that there was less loss of actin in myocardial fibers of dogs in group HFOV+IP than in group HFOV. The expression level of actin in myocardium of dogs in group HFOV+IP after treatment for 8 h (194.7 ± 3.1) was obviously higher than that in group HFOV (172.9 ± 2.6, t=13.20, P<0.01).
CONCLUSIONSCompared with pure HFOV, HFOV combined with IP can alleviate the inflammatory reaction in myocardium of dogs, reduce the apoptosis of cardiomyocytes, and ameliorate the myocardial damage due to ischemia and hypoxia.
Animals ; Apoptosis ; physiology ; Burns, Inhalation ; physiopathology ; therapy ; Dogs ; High-Frequency Ventilation ; Hypoxia ; Male ; Myocardial Ischemia ; physiopathology ; Myocytes, Cardiac ; Positive-Pressure Respiration ; Respiration, Artificial ; Smoke ; adverse effects ; Smoke Inhalation Injury ; therapy ; Treatment Outcome ; Tumor Necrosis Factor-alpha
9.Advances in the experimental study of the use of mesenchy- mal stem cells for the treatment of inhalation injury.
Chinese Journal of Burns 2015;31(3):238-240
Inhalation injury seriously threatens the survival and quality of life in burn and trauma patients. So far there is no breakthrough in the treatment of inhalation injury. A significant advance has been witnessed in the experimental study of the use of stem cells in the treatment of lung injury in recent years. In this paper, according to the results of our study in the systemic transplantation of bone marrow mesenchymal stem cells for the treatment of inhalation injury, the effect of mesenchymal stem cells on anti-inflammatory process and repair of lung tissues in inhalation injury, and its possible mechanisms are reviewed.
Humans
;
Lung
;
Lung Injury
;
blood
;
surgery
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells
;
Quality of Life
;
Smoke Inhalation Injury
;
blood
;
surgery
;
Treatment Outcome
;
Tumor Necrosis Factor-alpha
;
blood
10.Effects of two kinds of lung recruitment maneuvers on the correlated indexes of dogs with severe smoke inhalation injury.
Xincheng LIAO ; Guanghua GUO ; Feng ZHU ; Nianyun WANG ; Zhonghua FU ; Mingzhuo LIU
Chinese Journal of Burns 2014;30(4):299-304
OBJECTIVETo observe and compare the effects of two kinds of lung recruitment maneuvers, namely sustained inflation (SI) and incremental positive end-expiratory pressure (PEEP) (IP) on oxygenation, respiratory mechanics, and hemodynamics of dogs with severe smoke inhalation injury.
METHODSAfter being treated with conventional mechanical ventilation, 12 dogs were inflicted with severe smoke inhalation injury. They were divided into group SI and group IP according to the random number table, with 6 dogs in each group. Dogs in group SI were subjected to continuous positive airway pressure ventilation, with inspiratory pressure of 25 cmH2O (1 cmH2o = 0. 098 kPa), and it was sustained for 20 s. PEEP level in group IP was gradually increased by 5 cmH2O every 5 min up to 25 cmH2O, and then it was decreased by 5 cmH2O every 5 min until reaching 2-3 cmH2O. Then the previous ventilation mode was resumed in both groups for 8 hours. Blood gas analysis (pH value, PaO2, and PaCO2), oxygenation index (OI), respiratory mechanics parameters [peak inspiratory pressure (PIP), mean airway pressure, and dynamic lung compliance], and hemodynamic parameters [heart rate, mean arterial pressure (MAP), pulmonary arterial pressure (PAP), and cardiac output (CO)] were recorded or calculated before injury, immediately after injury, and at post ventilation hour (PVH) 2, 4, 6, 8. Data were processed with analysis of variance of repeated measurement and LSD-t test.
RESULTS(1) At PVH 6 and 8, pH values of dogs in group SI were significantly lower than those in group IP (with t values respectively 2. 431 and 2. 261, P values below 0.05); PaO2 levels in group SI [(87 ± 24), (78 ± 14) mmHg, 1 mmHg =0. 133 kPa] were lower than those in group IP [ (114 ± 18) , (111 ± 17) mmHg, with t values respectively 2. 249 and 3.671, P <0.05 or P <0.01]; OI values in group SI were significantly higher than those in group IP (with t values respectively 2.363 and 5.010, P <0.05 or P <0.01). No significant differences were observed in PaCO2 level within each group or between the two groups (with t values from 0. 119 to 1. 042, P values above 0.05). Compared with those observed immediately after injury, the pH values were significantly lowered (except for dogs in group IP at PVH 6 and 8, with t values from 2.292 to 3.222, P <0.05 or P <0.01), PaO2 levels were significantly elevated (with t values from 4. 443 to 6.315, P <0.05 or P <0.01), and OI values were significantly lowered (with t values from 2.773 to 9.789, P <0.05 orP <0.01) in both groups at all the treatment time points. (2) The PIP level at each time point showed no significant differences between two groups (with t values from 0. 399 to 1. 167, P values above 0. 05). At PVH 4 and 8, the mean airway .pressure values of dogs in group SI were significantly higher than those in group IP (with t values respectively 1.926 and 1. 190, P values below 0.05). At PVH 4, 6, and 8, the dynamic lung compliance levels of dogs in group SI [(9.5 ± 1.9), (12.8 ± 2. 1), (13. 1 ± 1.8) mL/cmH2O] were significantly lower than those in group IP [(11.6 ± 1.2), (15.4 ± 1.8), (14.9 ± 0.8) mL/cmH2O], with t values respectively 2. 289, 2. 303, 2. 238, P values below 0.05. Compared with those observed immediately after injury, PIP and the mean airway pressure values of dogs in two groups were significantly lowered at each treatment time point (with t values from 2. 271 to 7. 436, P <0. 05 or P < 0.01); the dynamic lung compliance levels were significantly elevated in both groups at PVH 6 and 8 (with t values from 2. 207 to 4. 195, P < 0.05 or P <0.01). (3) Heart rate, MAP, and PAP levels at each time point between two groups showed no significant differences (with t values from 0. 001 to 1. 170, P values above 0. 05). At PVH 4, 6, and 8, CO levels in group IP [(0. 6 + 0. 3), (0. 6 + 0. 4), (0. 5 + 0. 7) L/min] were significantly lower than those in group SI [(1.5 0.7), (1.8 + 1.1), (1.6 +0.9) L/min], with t values respectively 3. 028, 2.511, 2.363, P values below 0.05. Compared with that observed immediately after injury, CO level in group IP was significantly lowered at PVH 4, 6, or 8 (with t values respectively 2. 363, 2. 302, 2. 254, P values below 0. 05).
CONCLUSIONSBoth lung recruitment maneuvers can effectively improve oxygenation and lung compliance of dogs with severe smoke inhalation injury. IP is more effective in improving lung compliance, while SI shows less impact on the hemodynamic parameters.
Animals ; Blood Gas Analysis ; veterinary ; Dogs ; Hemodynamics ; Lung Compliance ; physiology ; Oxygen ; blood ; Oxygen Consumption ; physiology ; Positive-Pressure Respiration ; methods ; Respiration, Artificial ; Respiratory Mechanics ; Severity of Illness Index ; Smoke ; adverse effects ; Smoke Inhalation Injury ; physiopathology ; therapy

Result Analysis
Print
Save
E-mail