1.Impact of Folic Acid on the Resistance of Non-small Cell Lung Cancer Cells to Osimertinib by Regulating Methylation of DUSP1.
Chinese Journal of Lung Cancer 2024;26(12):881-888
BACKGROUND:
Drug resistance is the main cause of high mortality of lung cancer. This study was conducted to investigate the effect of folic acid (FA) on the resistance of non-small cell lung cancer (NSCLC) cells to Osimertinib (OSM) by regulating the methylation of dual specificity phosphatase 1 (DUSP1).
METHODS:
The OSM resistant NSCLC cell line PC9R was establishd by gradually escalation of OSM concentration in PC9 cells. PC9R cells were randomly grouped into Control group, OSM group (5 μmol/L OSM), FA group (600 nmol/L FA), methylation inhibitor decitabine (DAC) group (10 μmol/L DAC), FA+OSM group (600 nmol/L FA+5 μmol/L OSM), and FA+OSM+DAC group (600 nmol/L FA+5 μmol/L OSM+10 μmol/L DAC). CCK-8 method was applied to detect cell proliferation ability. Scratch test was applied to test the ability of cell migration. Transwell assay was applied to detect cell invasion ability. Flow cytometry was applied to measure and analyze the apoptosis rate of cells in each group. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) method was applied to detect the expression level of DUSP1 mRNA in cells. Methylation specific PCR (MSP) was applied to detect the methylation status of the DUSP1 promoter region in each group. Western blot was applied to analyze the expression levels of DUSP1 protein and key proteins in the DUSP1 downstream mitogen-activated protein kinase (MAPK) signaling pathway in each group.
RESULTS:
Compared with the Control group, the cell OD450 values (48 h, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of extracellular regulated protein kinases (ERK) were obviously increased (P<0.05); the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the DAC group were obviously increased (P<0.05); the apoptosis rate, the expression of p38 MAPK protein, the phosphorylation level of ERK, and the methylation level of DUSP1 were obviously reduced (P<0.05). Compared with the OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously increased (P<0.05). Compared with the FA+OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM+DAC group were obviously increased; the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously reduced (P<0.05).
CONCLUSIONS
FA may inhibit DUSP1 expression by enhancing DUSP1 methylation, regulate downstream MAPK signal pathway, then promote apoptosis, inhibit cell invasion and metastasis, and ultimately reduce OSM resistance in NSCLC cells.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Dual Specificity Phosphatase 1/pharmacology*
;
Cell Proliferation
;
p38 Mitogen-Activated Protein Kinases/pharmacology*
;
Methylation
;
Apoptosis
;
Cell Line, Tumor
2.Progress of Immunotherapy in EGFR-mutated Advanced Non-small Cell Lung Cancer.
Chinese Journal of Lung Cancer 2024;26(12):934-942
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are currently the first-line standard of care for patients with non-small cell lung cancer (NSCLC) that harbor EGFR mutations. Nevertheless, resistance to EGFR-TKIs is inevitable. In recent years, although immune checkpoint inhibitors (ICIs) have significantly shifted the treatment paradigm in advanced NSCLC without driver mutation, clinical benefits of these agents are limited in patients with EGFR-mutated NSCLC. Compared with wild-type tumors, tumors with EGFR mutations show more heterogeneity in the expression level of programmed cell death ligand 1 (PD-L1), tumor mutational burden (TMB), and other tumor microenvironment (TME) characteristics. Whether ICIs are suitable for NSCLC patients with EGFR mutations is still worth exploring. In this review, we summarized the clinical data with regard to the efficacy of ICIs in patients with EGFR-mutated NSCLC and deciphered the unique TME in EGFR-mutated NSCLC.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
ErbB Receptors/metabolism*
;
Immunotherapy
;
Mutation
;
B7-H1 Antigen/genetics*
;
Protein Kinase Inhibitors/pharmacology*
;
Tumor Microenvironment
3.Front-line therapy for brain metastases and non-brain metastases in advanced epidermal growth factor receptor-mutated non-small cell lung cancer: a network meta-analysis.
Yixiang ZHU ; Chengcheng LIU ; Ziyi XU ; Zihua ZOU ; Tongji XIE ; Puyuan XING ; Le WANG ; Junling LI
Chinese Medical Journal 2023;136(21):2551-2561
BACKGROUND:
The brain is a common metastatic site in patients with non-small cell lung cancer (NSCLC), resulting in a relatively poor prognosis. Systemic therapy with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is recommended as the first-line treatment for EGFR -mutated, advanced NSCLC patients. However, intracranial activity varies in different drugs. Thus, brain metastasis (BM) should be considered when choosing the treatment regimens. We conducted this network meta-analysis to explore the optimal first-line therapeutic schedule for advanced EGFR -mutated NSCLC patients with different BM statuses.
METHODS:
Randomized controlled trials focusing on EGFR-TKIs (alone or in combination) in advanced and EGFR -mutant NSCLC patients, who have not received systematic treatment, were systematically searched up to December 2021. We extracted and analyzed progression-free survival (PFS) and overall survival (OS). A network meta-analysis was performed with the Bayesian statistical model to determine the survival outcomes of all included therapy regimens using the R software. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used to compare intervention measures, and overall rankings of therapies were estimated under the Bayesian framework.
RESULTS:
This analysis included 17 RCTs with 5077 patients and 12 therapies, including osimertinib + bevacizumab, aumolertinib, osimertinib, afatinib, dacomitinib, standards of care (SoC, including gefitinib, erlotinib, or icotinib), SoC + apatinib, SoC + bevacizumab, SoC + ramucirumab, SoC + pemetrexed based chemotherapy (PbCT), PbCT, and pemetrexed free chemotherapy (PfCT). For patients with BM, SoC + PbCT improved PFS compared with SoC (HR = 0.40, 95% CI: 0.17-0.95), and osimertinib + bevacizumab was most likely to rank first in PFS, with a cumulative probability of 34.5%, followed by aumolertinib, with a cumulative probability of 28.3%. For patients without BM, osimertinib + bevacizumab, osimertinib, aumolertinib, SoC + PbCT, dacomitinib, SoC + ramucirumab, SoC + bevacizumab, and afatinib showed superior efficacy compared with SoC (HR = 0.43, 95% CI: 0.20-0.90; HR = 0.46, 95% CI: 0.31-0.68; HR = 0.51, 95% CI: 0.34-0.77; HR = 0.50, 95% CI: 0.38-0.66; HR = 0.62, 95% CI: 0.43-0.89; HR = 0.64, 95% CI: 0.44-0.94; HR = 0.61, 95% CI: 0.48-0.76; HR = 0.71, 95% CI: 0.50-1.00), PbCT (HR = 0.29, 95% CI: 0.11-0.74; HR = 0.31, 95% CI: 0.15-0.62; HR = 0.34, 95% CI: 0.17-0.69; HR = 0.34, 95% CI: 0.18-0.64; HR = 0.42, 95% CI: 0.21-0.82; HR = 0.43, 95% CI: 0.22-0.87; HR = 0.41, 95% CI: 0.22-0.74; HR = 0.48, 95% CI: 0.31-0.75), and PfCT (HR = 0.14, 95% CI: 0.06-0.32; HR = 0.15, 95% CI: 0.09-0.26; HR = 0.17, 95% CI: 0.09-0.29; HR = 0.16, 95% CI: 0.10-0.26; HR = 0.20, 95% CI: 0.12-0.35; HR = 0.21, 95% CI: 0.12-0.39; HR = 0.20, 95% CI: 0.12-0.31; HR = 0.23, 95% CI: 0.16-0.34) in terms of PFS. And, SoC + apatinib showed relatively superior PFS when compared with PbCT (HR = 0.44, 95% CI: 0.22-0.92) and PfCT (HR = 0.21, 95% CI: 0.12-0.39), but similar PFS to SoC (HR = 0.65, 95% CI: 0.42-1.03). No statistical differences were observed for PFS in patients without BM between PbCT and SoC (HR = 1.49, 95% CI: 0.84-2.64), but both showed favorable PFS when compared with PfCT (PfCT vs. SoC, HR = 3.09, 95% CI: 2.06-4.55; PbCT vs. PfCT, HR = 0.14, 95% CI: 0.06-0.32). For patients without BM, osimertinib + bevacizumab was most likely to rank the first, with cumulative probabilities of 47.1%. For OS, SoC + PbCT was most likely to rank first in patients with and without BM, with cumulative probabilities of 46.8%, and 37.3%, respectively.
CONCLUSION
Osimertinib + bevacizumab is most likely to rank first in PFS in advanced EGFR -mutated NSCLC patients with or without BM, and SoC + PbCT is most likely to rank first in OS.
Humans
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Afatinib/therapeutic use*
;
Lung Neoplasms/metabolism*
;
Bevacizumab/therapeutic use*
;
Bayes Theorem
;
Network Meta-Analysis
;
Protein Kinase Inhibitors/therapeutic use*
;
Pemetrexed/therapeutic use*
;
ErbB Receptors/genetics*
;
Brain Neoplasms/genetics*
;
Mutation/genetics*
4.Epidermal growth factor receptor compound and concomitant mutations: advances in precision treatment strategies.
Wenqian LI ; Rilan BAI ; Hanfei GUO ; Jiuwei CUI
Chinese Medical Journal 2023;136(23):2776-2786
Epidermal growth factor receptor ( EGFR ) mutations are common oncogenic driver mutations in patients with non-small cell lung cancer (NSCLC). The application of EGFR-tyrosine kinase inhibitors (TKIs) is beneficial for patients with advanced and early-stage NSCLC. With the development of next-generation sequencing technology, numerous patients have been found to have more than one genetic mutation in addition to a single EGFR mutation; however, the efficacy of conventional EGFR-TKIs and the optimal treatments for such patients remain largely unknown. Thus, we review the incidence, prognosis, and current treatment regimens of EGFR compound mutations and EGFR concomitant mutations to provide treatment recommendations and guidance for patients with these mutations.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Protein Kinase Inhibitors/pharmacology*
;
Mutation/genetics*
;
ErbB Receptors
5.Multi-classification prediction model of lung cancer tumor mutation burden based on residual network.
Xiangfu MENG ; Chunlin YU ; Xiaolin YANG ; Ziyi YANG ; Deng LIU
Journal of Biomedical Engineering 2023;40(5):867-875
Medical studies have found that tumor mutation burden (TMB) is positively correlated with the efficacy of immunotherapy for non-small cell lung cancer (NSCLC), and TMB value can be used to predict the efficacy of targeted therapy and chemotherapy. However, the calculation of TMB value mainly depends on the whole exon sequencing (WES) technology, which usually costs too much time and expenses. To deal with above problem, this paper studies the correlation between TMB and slice images by taking advantage of digital pathological slices commonly used in clinic and then predicts the patient TMB level accordingly. This paper proposes a deep learning model (RCA-MSAG) based on residual coordinate attention (RCA) structure and combined with multi-scale attention guidance (MSAG) module. The model takes ResNet-50 as the basic model and integrates coordinate attention (CA) into bottleneck module to capture the direction-aware and position-sensitive information, which makes the model able to locate and identify the interesting positions more accurately. And then, MSAG module is embedded into the network, which makes the model able to extract the deep features of lung cancer pathological sections and the interactive information between channels. The cancer genome map (TCGA) open dataset is adopted in the experiment, which consists of 200 pathological sections of lung adenocarcinoma, including 80 data samples with high TMB value, 77 data samples with medium TMB value and 43 data samples with low TMB value. Experimental results demonstrate that the accuracy, precision, recall and F1 score of the proposed model are 96.2%, 96.4%, 96.2% and 96.3%, respectively, which are superior to the existing mainstream deep learning models. The model proposed in this paper can promote clinical auxiliary diagnosis and has certain theoretical guiding significance for TMB prediction.
Humans
;
Lung Neoplasms/pathology*
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Mutation
;
Adenocarcinoma of Lung/genetics*
;
Biomarkers, Tumor/genetics*
6.Deubiquitinating enzyme JOSD2 affects susceptibility of non-small cell lung carcinoma cells to anti-cancer drugs through DNA damage repair.
Fujing GE ; Xiangning LIU ; Hongyu ZHANG ; Tao YUAN ; Hong ZHU ; Bo YANG ; Qiaojun HE
Journal of Zhejiang University. Medical sciences 2023;52(5):533-543
OBJECTIVES:
To investigate the effects and mechanisms of deubiquitinating enzyme Josephin domain containing 2 (JOSD2) on susceptibility of non-small cell lung carcinoma (NSCLC) cells to anti-cancer drugs.
METHODS:
The transcriptome expression and clinical data of NSCLC were downloaded from the Gene Expression Omnibus. Principal component analysis and limma analysis were used to investigate the deubiquitinating enzymes up-regulated in NSCLC tissues. Kaplan-Meier analysis was used to investigate the relationship between the expression of deubiquitinating enzymes and overall survival of NSCLC patients. Gene ontology enrichment and gene set enrichment analysis (GSEA) were used to analyze the activation of signaling pathways in NSCLC patients with high expression of JOSD2. Gene set variation analysis and Pearson correlation were used to investigate the correlation between JOSD2 expression levels and DNA damage response (DDR) pathway. Western blotting was performed to examine the expression levels of JOSD2 and proteins associated with the DDR pathway. Immunofluorescence was used to detect the localization of JOSD2. Sulforhodamine B staining was used to examine the sensitivity of JOSD2-knock-down NSCLC cells to DNA damaging drugs.
RESULTS:
Compared with adjacent tissues, the expression level of JOSD2 was significantly up-regulated in NSCLC tissues (P<0.05), and was significantly correlated with the prognosis in NSCLC patients (P<0.05). Compared with the tissues with low expression of JOSD2, the DDR-related pathways were significantly upregulated in NSCLC tissues with high expression of JOSD2 (all P<0.05). In addition, the expression of JOSD2 was positively correlated with the activation of DDR-related pathways (all P<0.01). Compared with the control group, overexpression of JOSD2 significantly promoted the DDR in NSCLC cells. In addition, DNA damaging agents significantly increase the nuclear localization of JOSD2, whereas depletion of JOSD2 significantly enhanced the sensitivity of NSCLC cells to DNA damaging agents (all P<0.05).
CONCLUSIONS
Deubiquitinating enzyme JOSD2 may regulate the malignant progression of NSCLC by promoting DNA damage repair pathway, and depletion of JOSD2 significantly enhances the sensitivity of NSCLC cells to DNA damaging agents.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Antineoplastic Agents/pharmacology*
;
Lung Neoplasms/genetics*
;
DNA Damage
;
DNA
;
Deubiquitinating Enzymes/genetics*
7.The effect of PLK1 inhibitor in osimertinib resistant non-small cell lung carcinoma cells.
Xiaoyang DAI ; Xiangning LIU ; Fujing GE ; Hongdao ZHU ; Churun ZHENG ; Fangjie YAN ; Bo YANG
Journal of Zhejiang University. Medical sciences 2023;52(5):558-566
OBJECTIVES:
To investigate the effects of PLK1 inhibitors on osimertinib-resistant non-small cell lung carcinoma (NSCLC) cells and the anti-tumor effect combined with osimertinib.
METHODS:
An osimertinib resistant NCI-H1975 cell line was induced by exposure to gradually increasing drug concentrations. Osimertinib-resistant cells were co-treated with compounds from classical tumor pathway inhibitor library and osimertinib to screen for compounds with synergistic effects with osimertinib. The Gene Set Enrichment Analysis (GSEA) was used to investigate the activated signaling pathways in osimertinib-resistant cells; sulforhodamine B (SRB) staining was used to investigate the effect of PLK1 inhibitors on osimertinib-resistant cells and the synergistic effect of PLK1 inhibitors combined with osimertinib.
RESULTS:
Osimertinib-resistance in NCI-H1975 cell (resistance index=43.45) was successfully established. The PLK1 inhibitors GSK 461364 and BI 2536 had synergistic effect with osimertinib. Compared with osimertinib-sensitive cells, PLK1 regulatory pathway and cell cycle pathway were significantly activated in osimertinib-resistant cells. In NSCLC patients with epidermal growth factor receptor mutations treated with osimertinib, PLK1 mRNA levels were negatively correlated with progression free survival of patients (R=-0.62, P<0.05), indicating that excessive activation of PLK1 in NSCLC cells may cause cell resistant to osimertinib. Further in vitro experiments showed that IC50 of PLK1 inhibitors BI 6727 and GSK 461364 in osimertinib-resistant cells were lower than those in sensitive ones. Compared with the mono treatment of osimertinib, PLK1 inhibitors combined with osimertinib behaved significantly stronger effect on the proliferation of osimertinib-resistant cells.
CONCLUSIONS
PLK1 inhibitors have a synergistic effect with osimertinib on osimertinib-resistant NSCLC cells which indicates that they may have potential clinical value in the treatment of NSCLC patients with osimertinib resistance.
Humans
;
Carcinoma, Non-Small-Cell Lung
;
Lung Neoplasms
;
ErbB Receptors/therapeutic use*
;
Drug Resistance, Neoplasm/genetics*
;
Mutation
;
Cell Line, Tumor
8.Peripheral Blood Laboratory Test Results Combined with TCF1+CD8+ T Lymphocytes Ratio to Predict the Response and Prognosis of Immunotherapy to Advanced Lung Cancer.
Hong LUO ; Sisi DAI ; Yalun LI ; Panwen TIAN ; Qintong LI ; Xuyu CAI
Chinese Journal of Lung Cancer 2023;26(8):605-614
BACKGROUND:
Immune checkpoint inhibitors (ICIs) therapy lacks viable biomarkers for response and prognosis prediction. This study aimed to investigate the correlation of peripheral blood laboratory test results combined with lymphocyte subset ratios to the response and prognosis of immunotherapy in advanced lung cancer.
METHODS:
Advanced lung cancer patients admitted to West China Hospital, Sichuan University from May 2021 to July 2023 were prospectively enrolled in this study. Clinical data and peripheral blood were collected before and after treatment and lymphocyte subset ratios were analyzed by flow cytometry. Logistic regression was used to identify factors correlated to ICIs treatment efficacy. Cox modeling was applied to explore the prognostic factors.
RESULTS:
Logistic regression showed that the baseline level of transcription factor T cell factor 1 (TCF1)+CD8+ T cell ratio and peripheral white blood cell (WBC) count, lymphocyte percentage, cytokeratin 19 fragment (CYFRA21-1) after 1 cycle of ICIs treatment were the potential predictors for ICIs response (P<0.05). Cox regression analysis showed that the baseline level of TCF1+CD8+ T cell ratio (P=0.020) and peripheral WBC count after 1 cycle of ICIs treatment (P<0.001) were prognostic factors.
CONCLUSIONS
Patients with high baseline TCF1+CD8+ T cell ratio combined with low WBC counts and low CYFRA21-1 level after 1 cycle of ICIs treatment are more likely to benefit from ICIs therapy.
Humans
;
Lung Neoplasms/drug therapy*
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
T Cell Transcription Factor 1/genetics*
;
Prognosis
;
CD8-Positive T-Lymphocytes
;
Immunotherapy
9.Evaluation of Efficacy and Prognosis Analysis of Stage III-IV SMARCA4-deficient Non-small Cell Lung Cancer Treated by PD-1 Immune Checkpoint Inhibitors plus Chemotherapy and Chemotherapy.
Xinjuan WANG ; Meng TU ; Hongxia JIA ; Hongping LIU ; Yan WANG ; Yibo WANG ; Nan JIANG ; Chunya LU ; Guojun ZHANG
Chinese Journal of Lung Cancer 2023;26(9):659-668
BACKGROUND:
The SMARCA4 mutation has been shown to account for at least 10% of non-small cell lung cancer (NSCLC). In the present, conventional radiotherapy and targeted therapy are difficult to improve outcomes due to the highly aggressive and refractory nature of SMARCA4-deficient NSCLC (SMARCA4-DNSCLC) and the absence of sensitive site mutations for targeted drug therapy, and chemotherapy combined with or without immunotherapy is the main treatment. Effective SMARCA4-DNSCLC therapeutic options, however, are still debatable. Our study aimed to investigate the efficacy and prognosis of programmed cell death 1 (PD-1) immune checkpoint inhibitors (ICIs) in combination with chemotherapy and chemotherapy in patients with stage III-IV SMARCA4-DNSCLC.
METHODS:
46 patients with stage III-IV SMARCA4-DNSCLC were divided into two groups based on their treatment regimen: the chemotherapy group and the PD-1 ICIs plus chemotherapy group, and their clinical data were retrospectively analyzed. Efficacy assessment and survival analysis were performed in both groups, and the influencing factors for prognosis were explored for patients with SMARCA4-DNSCLC.
RESULTS:
Male smokers are more likely to develop SMARCA4-DNSCLC. There was no significant difference in the objective response rate (76.5% vs 69.0%, P=0.836) between chemotherapy and the PD-1 ICIs plus chemotherapy or the disease control rate (100.0% vs 89.7%, P=0.286). The one-year overall survival rate in the group with PD-1 ICIs plus chemotherapy was 62.7%, and that of the chemotherapy group was 46.0%. The difference in median progression-free survival (PFS) between the PD-1 ICIs plus chemotherapy group and the chemotherapy group was statistically significant (9.3 mon vs 6.1 mon, P=0.048). The results of Cox regression analysis showed that treatment regimen and smoking history were independent influencing factors of PFS in patients with stage III-IV SMARCA4-DNSCLC, and family history was an individual influencing factor of overall survival in patients with stage III-IV SMARCA4-DNSCLC.
CONCLUSIONS
Treatment regimen may be a prognostic factor for patients with SMARCA4-DNSCLC, and patients with PD-1 ICIs plus chemotherapy may have a better prognosis.
Humans
;
Male
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Programmed Cell Death 1 Receptor/genetics*
;
Retrospective Studies
;
Antineoplastic Agents, Immunological/therapeutic use*
;
Prognosis
;
DNA Helicases/genetics*
;
Nuclear Proteins/genetics*
;
Transcription Factors/genetics*
10.Drug Resistance Mechanism and Therapeutic Strategy of Targeted Therapy of Non-small Cell Lung Cancer with MET Alterations.
Chinese Journal of Lung Cancer 2023;26(9):684-691
Mesenchymal to epithelial transition factor (MET) gene alterations involve in the proliferation, invasion, and metastasis of non-small cell lung cancer. MET-tyrosine kinase inhibitors (TKIs) have been approved to treat non-small cell lung cancer with MET alterations, and resistance to these TKIs is inevitable. Molecular mechanisms of resistance to MET-TKIs are completely unclear. The review focused on potential mechanisms of MET-TKIs resistance and therapeutics strategies to delay and prevent resistance.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
ErbB Receptors/genetics*
;
Drug Resistance, Neoplasm/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Epithelial-Mesenchymal Transition
;
Mutation

Result Analysis
Print
Save
E-mail