1.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
2.Research progress of metabolomics in psoriasis.
Chinese Medical Journal 2023;136(15):1805-1816
Psoriasis is a chronic inflammatory skin disease with significant physical and psychological burdens. The interplay between the innate and adaptive immune systems is thought to contribute to the pathogenesis; however, the details of the pathogenesis remain unclear. In addition, reliable biomarkers for diagnosis, assessment of disease activity, and monitoring of therapeutic response are limited. Metabolomics is an emerging science that can be used to identify and analyze low molecular weight molecules in biological systems. During the past decade, metabolomics has been widely used in psoriasis research, and substantial progress has been made. This review summarizes and discusses studies that applied metabolomics to psoriatic disease. These studies have identified dysregulation of amino acids, carnitines, fatty acids, lipids, and carbohydrates in psoriasis. The results from these studies have advanced our understanding of: (1) the molecular mechanisms of psoriasis pathogenesis; (2) diagnosis of psoriasis and assessment of disease activity; (3) the mechanism of treatment and how to monitor treatment response; and (4) the link between psoriasis and comorbid diseases. We discuss common research strategies and progress in the application of metabolomics to psoriasis, as well as emerging trends and future directions.
Humans
;
Psoriasis/drug therapy*
;
Skin/metabolism*
;
Biomarkers/metabolism*
;
Metabolomics/methods*
3.Ozonated oil alleviates dinitrochlorobenzene-induced allergic contact dermatitis via inhibiting the FcεRI/Syk signaling pathway.
Zhibing FU ; Yajie XIE ; Liyue ZENG ; Lihua GAO ; Xiaochun YU ; Lina TAN ; Lu ZHOU ; Jinrong ZENG ; Jianyun LU
Journal of Central South University(Medical Sciences) 2023;48(1):1-14
OBJECTIVES:
Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms.
METHODS:
Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions.
RESULTS:
Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1β, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1β, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05).
CONCLUSIONS
Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.
Animals
;
Mice
;
Dinitrochlorobenzene/metabolism*
;
Skin/metabolism*
;
Cytokines/metabolism*
;
Interleukin-17/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Dermatitis, Allergic Contact/pathology*
;
Dermatitis, Atopic/chemically induced*
;
Signal Transduction
;
RNA, Messenger/metabolism*
;
Mice, Inbred BALB C
4.Sensory and sympathetic nerves are involved in the changes of skin temperature, blood infusion and inflammatory cytokines of cutaneous tissue in the sensitized area of colitis rats.
Heng-Cong LI ; Wei CHEN ; Qing-Quan YU ; Li-Zhen CHEN ; Yang-Shuai SU ; Yi-Han LIU ; Bing ZHU ; Wei HE ; Xiang-Hong JING
Chinese Acupuncture & Moxibustion 2022;42(7):785-793
OBJECTIVE:
To investigate the changes of skin temperature, blood infusion and inflammatory cytokines of cutaneous tissue in the sensitized area of colitis model rats, as well as the relationship between sensory and sympathetic nerves and the formation of sensitized area, and to initially reveal the partial physical-chemical characteristics of the sensitized area in the colitis model rats.
METHODS:
Thirty-five male SD rats were randomly divided into a control group (n=10), a model group (n=18) and a guanethidine group (n=7). 5% dextran sulfate sodium (DSS) was adopted for 6-day free drinking to establish colitis model in the model group and the guanethidine group. On day 6 and 7, in the guanethidine group, guanethidine solution (30 mg/kg) was injected intraperitoneally for sympathetic block. On day 7, after injection of evans blue (EB) solution, the EB extravasation areas on the body surface were observed to investigate the distribution and physical-chemical characteristics of the sensitized area. The control area was set up, 0.5 cm away from the sensitized area, and with the same nerve segment innervation. Disease activity index (DAI) score of rats was compared between the normal group and the model group, and the morphological changes in the colon tissue were investigated with HE method. Using infrared thermal imaging technology and laser speckle flow imaging technology, skin temperature and blood infusion were determined in the sensitized area and the control area of the rats in the model group. Immunofluorescence technique was adopted to observe the expression levels of the positive nerve fibers of substance P (SP), calcitonin gene-related peptide (CGRP) and tyrosine hydroxylase (TH), and the correlation with blood vessels; as well as the expression levels of SP positive nerve fibers/tryptase+ mast cells, and tryptase+ mast cells/5-hydroxytryptamine (5-HT) in skin tissue in the sensitized area and the control area of the rats in the model group. MSD multi-level factorial method and ELISA were applied to determine the contents of pro-inflammatory and anti-inflammatory cytokines (e.g. TNF-α, IL-1β, IL-6, IL-4 and IL-10) and anti-inflammatory substance corticosterone (CORT).
RESULTS:
Sensitization occurred at the T12-S1 segments of the colitis model rats, especially at L2-L5 segments. Compared with the normal group, DAI score was increased in the rats of the model group (P<0.05), and the colonic mucosal damage was obvious, with the epithelial cells disordered, even disappeared, crypt destructed, submucosal edema and a large number of inflammatory cells infiltrated. In comparison with the control area, the skin temperature and blood infusion were increased in the sensitized area of the model group (P<0.05, P<0.01); as well as the expression levels of the positive nerve fibers of SP, CGRP and TH of skin tissue (P<0.05), which was specially distributed in peripheral vessels, the expression levels of SP positive nerve fibers/tryptase+ mast cells, and tryptase+ mast cells/5-HT of the skin tissue were all expanded (P<0.05) in the sensitized area of the model group. Compared with the model group, the number of sensitized areas was reduced in the guanethidine group (P<0.05). In comparison with the control area of the model group, in the sensitized area, the contents of pro-inflammatory cytokines, e.g. TNF-α, IL-1β and IL-6, and the anti-inflammatory substance CORT of skin tissue were all increased (P<0.05); and the contents of IL-6 and TNF-α were negatively correlated with CORT (P<0.05).
CONCLUSION
The sensitized areas on the body surface of colitis rats are mainly distributed in the L2-L5 segments. Sensory and sympathetic nerves are involved in the acupoint sensitization, and the sensitized areas may have the dynamic changes in pro-inflammatory and anti-inflammatory substances.
Animals
;
Anti-Inflammatory Agents
;
Calcitonin Gene-Related Peptide/metabolism*
;
Colitis/metabolism*
;
Cytokines/metabolism*
;
Guanethidine
;
Interleukin-6
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Serotonin
;
Skin Temperature
;
Substance P/genetics*
;
Tryptases
;
Tumor Necrosis Factor-alpha
5.Comparative study on in vivo and in vitro permeability of Huoxue Zhitong gel patch and microemulsion gel.
Hua-Hua LI ; Chang YANG ; Yan-Ling YANG ; Jia-Yi HUANG ; Ying-Yin ZHU ; Shou-Ying DU ; Jie BAI
China Journal of Chinese Materia Medica 2022;47(7):1857-1863
This study aims to establish a method for determination of paeonol(Pae), eugenol(Eug), and piperine(Pip) content in receptor liquid and research on the permeability and pharmacokinetics of Huoxue Zhitong gel patch and microemulsion gel. The Franz diffusion experiment was conducted to assess the percutaneous permeability, and the microdialysis method was employed to assess pharmacokinetics of Huoxue Zhitong gel patch and microemulsion gel. The content of Pae, Eug, and Pip in receptor liquid in vitro and in vivo was determined by HPLC and UPLC-MS. The Q_n and J_(ss) of Pae, Eug, and Pip in the gel patch were significantly higher than those in the microemulsion gel, indicating that the drug release was faster in the gel patch. The C_(max), AUC_(0-760), and MRT of Pae, Eug, and Pip in the gel patch were higher than those in the microemulsion gel, indicating that the gel patch can promote the penetration and prolong the skin residence of the drug. The results of this study provide reference for improving the dosage form of Huoxue Zhitong patch.
Administration, Cutaneous
;
Chromatography, Liquid
;
Emulsions
;
Permeability
;
Skin/metabolism*
;
Skin Absorption
;
Tandem Mass Spectrometry
6.Effect of fire needling on imiquimod induced psoriasis-like lesion and STAT3 pathway in mice.
Fang FENG ; Yan WANG ; Jing-Xia ZHAO ; Ting-Ting DI ; Yu-Jiao MENG ; Zhao-Xia CHEN ; Cong QI ; Xue-Qing HU ; Ya-Zhuo WANG ; Ping LI
Chinese Acupuncture & Moxibustion 2022;42(5):541-548
OBJECTIVE:
To observe the effect of fire needling on psoriasis-like lesion and the signal transducer and activator of transcription 3 (STAT3) pathway in mice and compare the therapeutic effect between different interventions of fire needling therapy (surrounding technique of fire needling, fire needling at "Dazhui" [GV 14] and "Zusanli" [ST 36]).
METHODS:
Thirty male BALB/c mice were randomized into a blank group, a model group, a dexamthasone group, a surrounding technique group and an acupoint group, 6 mice in each one. Except the blank group, the mice in the rest groups were established as psoriasis-like lesion model by topical application with imiquimod cream, once daily, consecutively for 8 days. From day 4 to day 8, in the dexamthasone group, gastric infusion with 0.2 mL dexamthasone was administered, once daily. On day 4, 6 and 8, in the surrounding technique group, fire needling was exerted around the skin lesion; and fire needling was applied to "Dazhui" (GV 14) and "Zusanli" (ST 36) in the acupoint group, once a day. The changes in skin lesion on the dorsal parts of mice were observed in each group to score the psoriasis area and severity index (PASI). Using HE staining, the dermal morphological changes and epidermal thickness were observed in the mice of each group. The positive expression of proliferating cell-associated antigen Ki-67 was determined by immunofluorescence. Immunohistochemistry method was used to determine the expressions of , and T cells of skin tissue in each group. Using real-time PCR, the expressions of interleukin (IL)-17, IL-22, tumor necrosis factor α(TNF-α) mRNA were determined. Western blot method was adopted to determine the protein expressions of STAT3 and p-STAT3 in skin tissue in each group.
RESULTS:
Compared with the blank group, the scores of each item and the total scores of PASI, as well as the epidermal thickness were all increased in the mice of the model group (P<0.01). Except for the erythema scores of the dexamethasone group and the surrounding technique group, the scores of each item and the total scores of PASI, as well as the epidermal thickness were all decreased in each intervention group as compared with the model group (P<0.01). The infiltration scores and the total scores in the dexamethasone group and the acupoint group were lower than those in the surrounding technique group respectively (P<0.01, P<0.05). In comparison with the blank group, Ki-67 positive cell numbers and the numbers of , and T cells in skin tissue were increased in the mice of the model group (P<0.01). Ki-67 positive cell numbers and the numbers of , and T cells were reduced in each intervention group as compared with the model group (P<0.01), and the numbers of and T cells in the acupoint group were less than the surrounding technique group (P<0.01). Compared with the blank group, the mRNA expressions of IL-17, IL-22 and TNF-α and the ratio of p-STAT3 to STAT3 were all increased in the model group (P<0.01). The mRNA expressions of IL-17, IL-22 and TNF-α and the ratio of p-STAT3 to STAT3 were all decreased in each intervention group as compared with the model group (P<0.01, P<0.05). The mRNA expressions of IL-17, IL-22 and TNF-α in the acupoint group, as well as mRNA expression of IL-17 in the surrounding technique group were all lower than the dexamethasone group (P<0.01), while, the mRNA expression of IL-22 in the acupoint group was lower than the surrounding technique group (P<0.01).
CONCLUSION
Fire needling therapy improves skin lesion severity in imiquimod induced psoriasis-like lesion of the mice, which is probably related to the inhibition of STAT3 pathway activation and the decrease of Th17 inflammatory factors expression. The systemic regulation of fire needling at "Dazhui" (GV 14) and "Zusanli" (ST 36) is superior to the local treatment.
Animals
;
Dexamethasone/therapeutic use*
;
Imiquimod/metabolism*
;
Interleukin-17/metabolism*
;
Ki-67 Antigen/metabolism*
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Psoriasis/drug therapy*
;
RNA, Messenger/metabolism*
;
STAT3 Transcription Factor/pharmacology*
;
Skin/pathology*
;
Tumor Necrosis Factor-alpha/metabolism*
7.m6A modification of mRNA in skin diseases.
Journal of Central South University(Medical Sciences) 2022;47(8):1154-1162
N6-methyladenosine (m6A) is the predominant post-transcriptional modification for eukaryotic mRNA. It's regulated by methyltransferases, demethylases, and m6A binding proteins, and plays an important role in regulating splicing, translation, and degradation of mRNA. Skin diseases, especially immune skin diseases and skin tumors, have a complicated pathogenesis and are refractory to treatment, seriously affecting the patient quality of life. Recent studies have revealed that m6A and its regulatory proteins can affect the development of numerous skin diseases. The m6A modification was found to be involved in skin accessory development, including hair follicle and sweat gland formation. The level of m6A modification was significantly altered in a variety of skin diseases including melanoma, cutaneous squamous cell carcinoma, Merkel cell carcinoma, and psoriasis, and affected a variety of biological processes including cell proliferation and differentiation migration. The m6A and its regulatory proteins may become potential molecular markers or therapeutic targets for skin diseases, and have promising clinical applications in early diagnosis, efficacy determination, prognosis prediction, and gene therapy of skin diseases.
Adenosine/metabolism*
;
Carcinoma, Squamous Cell
;
Humans
;
Quality of Life
;
RNA, Messenger/metabolism*
;
Skin Neoplasms/genetics*
8.Research advances on interleukin-6 in hypertrophic scar formation.
Zu Han CHEN ; Bin YU ; Qi Fa YE ; Yan Feng WANG
Chinese Journal of Burns 2022;38(9):874-877
Hypertrophic scar is a pathological repair result of excessive accumulation of extracellular matrix after skin damage, which affects the appearance and function of patients with varying degrees. The degree of scar formation is directly related to the strength of inflammatory reaction during wound healing, and excessive or prolonged inflammatory response increases the incidence of hypertrophic scars. Interleukin-6 (IL-6) is a pleiotropic cytokine that is involved in regulating the fibrotic network composed of fibroblasts, macrophages, keratinocytes, and vascular endothelial cells, and is closely related to the formation of hypertrophic scars. This article reviews the role of IL-6 and its signaling pathway in hypertrophic scar formation.
Cicatrix, Hypertrophic/pathology*
;
Endothelial Cells/metabolism*
;
Fibroblasts/metabolism*
;
Humans
;
Interleukin-6
;
Skin/pathology*
;
Wound Healing/physiology*
9.Research advances on the function of skin touch receptor Merkel cells.
Hui Pu YUAN ; Yuan Yuan DING ; Yi Xi ZHENG ; Ya Jun ZHANG ; Xia LIU ; Chen RUI ; Chao Chen WANG ; Ying XIAO
Chinese Journal of Burns 2022;38(9):887-892
The reconstruction of tactile function during the repair of skin damage caused by factors including burns is inseparable from the functional regeneration of tactile receptor Merkel cells. Merkel cells mainly exist in the basal layer of the epidermis and are closely connected with nerves to form Merkel cell-nerve complexes, which play an important role in biological organisms. A large number of studies have shown that Merkel cells conduct precise transmission of mechanical force stimuli through the mechanically gated ion channels PIEZO2, and perform the function of tactile receptors. In this paper, we discussed the characteristics of Merkel cells and analyzed the different subgroups that may possibly exist in this type of cells and their functions, at the same time, we investigated the animal model research of touch-related diseases and the clinical diseases related to touch, revealing the importance of Merkel cell function research.
Animals
;
Ion Channels/metabolism*
;
Mechanotransduction, Cellular/physiology*
;
Merkel Cells/physiology*
;
Skin/metabolism*
;
Touch/physiology*
10.Effect of deep dermal tissue dislocation injury on skin fibrosis in pig.
Xiao Ping YU ; Ying Kai LIU ; Xian MA ; Jia Jun TANG ; Yi Wen NIU ; Jun Li ZHOU ; Shuliang LU
Chinese Journal of Burns 2022;38(11):1057-1065
Objective: To explore the effect of deep dermal tissue dislocation injury on skin fibrosis in pig, in order to provide some theoretical basis for burn scar treatment. Methods: The experimental research method was applied. Six 2-month-old female Duroc pigs were taken. Fifteen operative areas on the right dorsum of pigs on which medium-thick skin grafts and deep dermal tissue slices were cut and re-implanted were included into dermal in situ reimplantation group, and fifteen operative areas on the left dorsum of pigs on which medium-thick skin grafts and deep dermal tissue slices were cut and the deep dermal tissue slice was placed under the fat layer were included into the dermal dislocation group. The hair growth in the operative areas on post-injury day (PID) 7, 14, and 21 and the cross-sectional structure on PID 14 were observed in the two groups. On PID 7, 14, and 21, the skin thickness (the distance from the epidermis to the upper edge of the fat), the dermal thickness (the distance from the lower edge of the epidermis to the upper edge of the fat, excluding the fibrotic tissue thickness between the dermis and the fat), and the fibrosis tissue thickness of the dermis-fat interface (from the lower edge of the deep dermis to the upper edge of the fat in dermal in situ reimplantation group and from the lower edge of the superficial dermis to the upper edge of the fat in dermal dislocation group) in the operative areas were measured and compared between the two groups; the fibrotic tissue thickness at the dermal cutting interface (from the lower edge of the superficial dermis to the upper edge of the deep dermis) in the operative areas in dermal in situ reimplantation group was measured and compared with the fibrotic tissue thickness at the dermal-fat interface. Sirius red staining was performed to observe and compare the type Ⅰ and Ⅲ collagen content in the dermal-fat interface in the operative areas between the 2 groups and between the dermal cutting interface and dermal-fat interface in the operative areas in dermal in situ reimplantation group. Immunohistochemical staining was performed to observe the positive expressions of proliferating cell nuclear antigen (PCNA), transforming growth factor β1 (TGF-β1), fibroblast growth factor 2 (FGF-2), and hepatocyte growth factor (HGF) in the operative areas in the two groups. The sample number was 6. Data were statistically analyzed with independent sample t test. Results: On PID 7, 14, and 21, the hairs in the operative areas in dermal in situ reimplantation group were denser than those in dermal dislocation group. On PID 14, the skin cross section in the operative areas in dermal dislocation group showed a "sandwich"-like structure, while the skin cross section in the operative areas in dermal in situ reimplantation group had normal structure. On PID 7, 14, and 21, the skin thickness in the operative areas in dermal dislocation group was (4 234±186), (4 688±360), and (4 548±360) μm, respectively, which was close to (4 425±156), (4 714±141), and (4 310±473) μm in dermal in situ reimplantation group (P>0.05); the dermal thickness in the operative areas in dermal dislocation group was significantly thinner than that in dermal in situ reimplantation group (with t values of -9.73, -15.85, and -15.41, respectively, P<0.01); the fibrotic tissue thickness at the dermal-fat interface in the operative areas in dermal dislocation group was significantly thicker than that in dermal in situ reimplantation group (with t values of 14.48, 20.58, and 15.67, respectively, P<0.01); there was no statistically significant difference between the fibrotic tissue thickness at the dermal-fat interface and the dermal cutting interface in the operative areas in dermal in situ reimplantation group (P>0.05). On PID 7, 14, 21, the type Ⅲ collagen content in the dermal-fat interface in the operative areas in dermal dislocation group was increased significantly compared with that in dermal in situ replantation group (with t values of 2.65, 0.61, and 7.39, respectively, P<0.05 or P<0.01), whereas there were no statistically significant differences in the type Ⅰ collagen content at the dermal-fat interface in the operative areas between the 2 groups (P>0.05) and the type Ⅰ and Ⅲ collagen content between the dermal-fat interface and the dermal cutting interface in the operative areas in dermal in situ reimplantation group (P>0.05). On PID 7, 14, and 21, PCNA, TGF-β1, FGF-2, and HGF were positively expressed in the superficial dermis and adipose tissue in the operative areas in dermal dislocation group, while PCNA, TGF-β1, FGF-2, and HGF were positively expressed in the superficial dermis, deep dermis, and adipose tissue in the operative areas in dermal in situ reimplantation group. Conclusions: Inadequate intrinsic thickness of dermal tissue is the key factor causing fibrosis, and the biological purpose of fibrosis is to "compensate" the intrinsic thickness of the skin. Besides, adipose tissue may also be an important component of fibrotic skin repair.
Swine
;
Female
;
Animals
;
Dermis/pathology*
;
Proliferating Cell Nuclear Antigen/metabolism*
;
Fibroblast Growth Factor 2
;
Cross-Sectional Studies
;
Fibrosis
;
Skin Diseases/pathology*
;
Collagen/metabolism*

Result Analysis
Print
Save
E-mail