1.Effect of Miscanthus sinensis var. purpurascens Flower Extract on Proliferation and Molecular Regulation in Human Dermal Papilla Cells and Stressed C57BL/6 Mice.
Gi Hee JEONG ; William A BOISVERT ; Mei-Zhu XI ; Yi-Lin ZHANG ; Young-Bin CHOI ; Sunghun CHO ; Sanghyun LEE ; Changsun CHOI ; Bog-Hieu LEE
Chinese journal of integrative medicine 2018;24(8):591-599
OBJECTIVESTo investigate the hair growth-promoting effect of Miscanthus sinensis var. purpurascens (MSP) flower extracton on in vitro and in vivo models.
METHODSMSP flower extract was extracted in 99.9% methanol and applied to examine the proliferation of human dermal papilla cells (hDPCs) in vitro at the dose of 3.92-62.50 μg/mL and hair growth of C57BL/6 mice in vivo at the dose of 1000 μg/mL. The expression of transforming growth factor β1 (TGF-β1), hepatocyte growth factor (HGF), β-catenin, substance P was measured by relative quantitative realtime polymerase chain reaction. Histopathological and immunohistochemical analysis were performed.
RESULTSMSP (7.81 μg/mL) down-regulated TGF-β1 and up-regulated HGF and β-catenin in hDPCs (P<0.01). MSP (1000 μg/mL)-treated mice showed the earlier transition of hair follicles from the telogen to the anagen phase. The number of mast cells was lower in the MSP-treated mice than in other groups (P<0.05 vs. NCS group). Substance P and TGF-β1 were expressed in hair follicles and skin of the MSP group lower than that in negative control. Stem cell factor in hair follicles was up-regulated in the MSP-treated mice (P<0.01).
CONCLUSIONSThe MSP flower extract may have hair growth-promotion activities.
Animals ; Antioxidants ; pharmacology ; Cell Count ; Cell Proliferation ; drug effects ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Female ; Flowers ; chemistry ; Hair Follicle ; cytology ; drug effects ; growth & development ; Hepatocyte Growth Factor ; metabolism ; Humans ; Mast Cells ; cytology ; Mice, Inbred C57BL ; Phosphorylation ; drug effects ; Plant Extracts ; pharmacology ; Poaceae ; chemistry ; RNA, Messenger ; genetics ; metabolism ; Skin ; metabolism ; Stem Cell Factor ; metabolism ; Stress, Psychological ; pathology ; Substance P ; metabolism ; Transforming Growth Factor beta ; genetics ; metabolism ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; beta Catenin ; metabolism
2.Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.
Yohanes Widodo WIROHADIDJOJO ; Arief BUDIYANTO ; Hardyanto SOEBONO
Yonsei Medical Journal 2016;57(5):1282-1285
To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm-2) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.
Blood Platelets/*cytology/*metabolism
;
Cell Movement/radiation effects
;
Cell Proliferation/radiation effects
;
Cells, Cultured
;
Collagen/metabolism
;
Fibrin/*metabolism
;
Fibroblasts/*cytology/metabolism/*radiation effects
;
Humans
;
Skin/*cytology
;
Time Factors
;
Ultraviolet Rays/*adverse effects
3.Ultraviolet A Enhances Cathepsin L Expression and Activity via JNK Pathway in Human Dermal Fibroblasts.
Qing-Fang XU ; Yue ZHENG ; Jian CHEN ; Xin-Ya XU ; Zi-Jian GONG ; Yun-Fen HUANG ; Chun LU ; Howard I MAIBACH ; Wei LAI
Chinese Medical Journal 2016;129(23):2853-2860
BACKGROUNDCathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging. Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alternate trafficking of CatL. Little is known about signaling pathways involved in the regulation of UVA-induced CatL expression and activity. This study aims to investigate whether a single UVA irradiation affects CatL expression and activity and whether mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway is involved in the regulation of UVA-induced CatL expression and activity in human dermal fibroblasts (HDFs).
METHODSPrimary HDFs were exposed to UVA. Cell proliferation was determined by a cell counting kit. UVA-induced CatL production and activity were studied with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and fluorimetric assay in cell lysates collected on three consecutive days after irradiation. Time courses of UVA-activated JNK and p38MAPK signaling were examined by Western blotting. Effects of MAPK inhibitors and knockdown of Jun and Fos on UVA-induced CatL expression and activity were investigated by RT-PCR, Western blotting, and fluorimetric assay. Data were analyzed by one-way analysis of variance.
RESULTSUVA significantly increased CatL gene expression, protein abundance, and enzymatic activity for three consecutive days after irradiation (F = 83.11, 56.14, and 71.19, respectively; all P < 0.05). Further investigation demonstrated phosphorylation of JNK and p38MAPK activated by UVA. Importantly, inactivation of JNK pathway significantly decreased UVA-induced CatL expression and activity, which were not affected by p38MAPK inhibition. Moreover, knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatL expression and activity.
CONCLUSIONSUVA enhances CatL production and activity in HDFs, probably by activating JNK and downstreaming AP-1. These findings provide a new possible molecular approach for antiphotoaging therapy.
Anthracenes ; pharmacology ; Cathepsin L ; metabolism ; Cells, Cultured ; Child ; Child, Preschool ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; antagonists & inhibitors ; Fibroblasts ; cytology ; drug effects ; metabolism ; radiation effects ; Humans ; Imidazoles ; pharmacology ; MAP Kinase Signaling System ; drug effects ; radiation effects ; Oncogene Proteins v-fos ; genetics ; metabolism ; Proto-Oncogene Proteins c-jun ; genetics ; metabolism ; Pyridines ; pharmacology ; Skin ; cytology ; Ultraviolet Rays
4.Expressiona of c-Jun and collagens I and III in cultured human skin fibroblasts are affected by infrared ray radiation.
Ping LIU ; Rong-Li YANG ; Hui SU ; Lin-Li LI ; Jian-Wen SONG ; Ning LU ; Yu-Ze LIU
Journal of Southern Medical University 2016;36(2):163-169
OBJECTIVETo observe the effect of solar infrared ray (IR) radiation on the expressions of c-Jun and collagens I and III in cultured human skin fibroblasts (HSFs) and explore the molecular mechanism by which IR radiation causes aging of the skin.
METHODSPrimarily cultured HSFs exposed to IR radiation were examined for changes of the cell viability with MTT assay. The mRNA and protein expressions of c-Jun and collagens I and III was detected with real-time quantitative PCR and immunocytochemistry.
RESULTSMTT assay showed that IR irradiation caused inhibition of cell proliferation compared with the control cells. The mRNA and protein expression of collagen I was decreased significantly by IR irradiation with the increase of the irradiation dose (P<0.01). HSFs irradiated by IR for 12 h showed a dose-dependent reduction of the expression of collagen type III mRNA and protein (P<0.05, P<0.01), but the expression increased dose-dependently in response to IR exposure for 24 h (P<0.05 or 0.01). IR irradiation enhanced the mRNA and protein expression of c-Jun in a dose-dependence manner (P<0.05 or 0.01).
CONCLUSIONSIR irradiation can increase the expression of c-Jun, inhibit the expression of collagen I, and cause disturbance in collagen III expression in human skin fibroblasts, which may be one of the mechanism of IR radiation to initiate and promote skin photoaging.
Cell Proliferation ; Cell Survival ; Cells, Cultured ; Collagen Type I ; metabolism ; Collagen Type III ; metabolism ; Fibroblasts ; metabolism ; radiation effects ; Humans ; Infrared Rays ; Proto-Oncogene Proteins c-jun ; metabolism ; RNA, Messenger ; metabolism ; Skin ; cytology ; Skin Aging ; Ultraviolet Rays
5.Comparison of the histological morphology between normal skin and scar tissue.
Shao-wei YANG ; Zhi-jun GENG ; Kui MA ; Xiao-yan SUN ; Xiao-bing FU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(2):265-269
Skin wound healing is a complex event, and interrupted wound healing process could lead to scar formation. The aim of this study was to examine the morphological changes of scar tissue. Pathological staining (HE staining, Masson's trichrome staining, methenamine silver staining) was used to evaluate the morphological changes of regenerating epidermis in normal skin and scar tissue, and immunofluorescence staining to detect the expression of collagen IV, a component of basement membrane (BM), and the expression of integrinβ4, a receptor for BM laminins. Additionally, the expression of CK14, CK5, and CK10 was measured to evaluate the proliferation and differentiation of keratinocytes in normal skin and scar tissue. The results showed that the structure of the skin was histologically changed in scar tissue. Collagen IV, expressed under the epidermis of normal skin, was reduced distinctly in scar tissue. Integrinβ4, expressed in the basal layer of normal skin, was found absent in the basal layer of scar tissue. Additionally, it was found that keratinocytes in scarring epidermis were more proliferative than in normal skin. These results indicate that during the skin wound healing, altered formation of BM may affect the proliferation of keratinocytes, reepithelial and tissue remodeling, and then result in scar formation. Thus, remodeling BM structure during wound repair may be beneficial for improving healing in cutaneous wounds during clinical practice.
Adolescent
;
Adult
;
Cicatrix
;
metabolism
;
pathology
;
Collagen Type IV
;
metabolism
;
Female
;
Humans
;
Integrin beta4
;
metabolism
;
Keratinocytes
;
cytology
;
metabolism
;
pathology
;
Male
;
Skin
;
cytology
;
metabolism
;
pathology
6.Effects of Blending Oil of Lavender and Thyme on Oxidative Stress, Immunity, and Skin Condition in Atopic Dermatitis Induced Mice.
Journal of Korean Academy of Nursing 2015;45(3):367-377
PURPOSE: The purpose of this study was to evaluate the effects of essential oil on oxidative stress, immunity, and skin condition in atopic dermatitis (AD) induced mice. METHODS: This study was a 3x3 factorial design. Factors were oil type (Lavender, Thyme, and 2:1 mixture of lavender and thyme oil [blending oil]) and treatment period (0 day, 7 days, and 21 days). The samples were 45 mice with AD and randomly assigned to nine groups of five mice per group. The dependent variables such as superoxide radical, IgE, degranulated mast cells, and epidermal thickness were measured. Data were collected from February to April in 2014. Descriptive statistics, One-way ANOVA, Two-way ANOVA, and Tukey's HSD test were performed using the SPSS WIN 20.0 program. RESULTS: Dependent variables were not statistically significantly different by the three oil types (p >.05). Essential oils such as lavender, thyme, and blending oil were all effective in reducing AD symptoms and especially 2:1 blending oil were most effective. There were statistically significant differences by the three treatment periods in all dependent variables (p <.001). There were statistically significant interactions between oil types and treatment periods in all dependent variables (p <.01). For decreasing superoxide radical, degranulated mast cells, and epidermal thickness, 2:1 mixed oil should be applied for at least 21 days. Otherwise to reduce IgE, 2:1 mixed oil should be used for at least 7 days. CONCLUSION: These findings provide bases for developing effective interventions for AD patients to manage their AD symptoms.
Animals
;
Dermatitis, Atopic/chemically induced/*drug therapy/pathology
;
Disease Models, Animal
;
*Immunity/drug effects
;
Immunoglobulin E/blood
;
Lavandula/*chemistry/metabolism
;
Mast Cells/cytology/metabolism
;
Mice
;
Oils, Volatile/chemistry/pharmacology/therapeutic use
;
*Oxidative Stress/drug effects
;
Picryl Chloride/toxicity
;
Plant Oils/chemistry/pharmacology/*therapeutic use
;
Singlet Oxygen/metabolism
;
Skin/drug effects/pathology
;
Thymus Plant/*chemistry/metabolism
7.Advances in the mechanism of mesenchymal stem cells in promoting wound healing.
Wenjing ZHU ; Haobo SUN ; Guozhong LYU ; Email: LUGUOZHONG@HOTMAIL.COM.
Chinese Journal of Burns 2015;31(6):476-478
Mesenchymal stem cells possess the ability of self-renewal and multiple differentiation potential, thus exert immunomodulatory effect during tissue repair. Mesenchymal stem cells can stimulate angiogenesis and promote tissue repair through transdifferentiation and secreting a variety of growth factors and cytokines. This review outlines the advances in the mechanism of mesenchymal stem cells in promoting wound healing, including alleviation of inflammatory response, induction of angiogenesis, and promotion of migration of mesenchymal stem cells to the site of tissue injury.
Cell Differentiation
;
Cell Transdifferentiation
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stromal Cells
;
cytology
;
metabolism
;
physiology
;
Skin
;
cytology
;
metabolism
;
Wound Healing
;
physiology
8.Shikonin Promotes Skin Cell Proliferation and Inhibits Nuclear Factor-κB Translocation via Proteasome Inhibition In Vitro.
Yan YAN ; Minao FURUMURA ; Takako GOUYA ; Atsufumi IWANAGA ; Kwesi TEYE ; Sanae NUMATA ; Tadashi KARASHIMA ; Xiao-Guang LI ; Takashi HASHIMOTO
Chinese Medical Journal 2015;128(16):2228-2233
BACKGROUNDShikonin is a major active chemical component extracted from Lithospermi Radix, an effective traditional herb in various types of wound healing. Shikonin can accelerate granulomatous tissue formation by the rat cotton pellet method and induce neovascularization in granulomatous tissue. The purpose of the study was to investigate its mechanism of action in human skin cells.
METHODSMTS assay was used to measure cell growth. The collagen type I (COL1 ) mRNA expression and procollagen type I C-peptide (PIP) production were detected by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Immunofluorescence and western blot analyses were carried out to investigate nuclear factor-κB (NF-κB) signaling pathway. Cell-based proteasome activity assay was used to determine proteasome activity.
RESULTSIn this study, we found that 10 μmol/L shikonin stimulated the growth of normal human keratinocytes and 1 μmol/L shikonin promoted growth of human dermal fibroblasts. However, shikonin did not directly induce COL1 mRNA expression and PIP production in dermal fibroblasts in vitro. In addition, 1 μmol/L shikonin inhibited translocation of NF-κB p65 from cytoplasm to nucleus induced by tumor necrosis factor-α stimulation in dermal fibroblasts. Furthermore, shikonin inhibited chymotrypsin-like activity of proteasome and was associated with accumulation of phosphorylated inhibitor κB-α in dermal fibroblasts.
CONCLUSIONSThese results suggested that shikonin may promote wound healing via its cell growth promoting activity and suppress skin inflammation via inhibitory activity on proteasome. Thus, shikonin may be a potential therapeutic reagent both in wound healing and inflammatory skin diseases.
Cell Proliferation ; drug effects ; Cells, Cultured ; Enzyme-Linked Immunosorbent Assay ; Fibroblasts ; drug effects ; Humans ; Keratinocytes ; drug effects ; NF-kappa B ; metabolism ; Naphthoquinones ; pharmacology ; Polymerase Chain Reaction ; Proteasome Endopeptidase Complex ; drug effects ; Skin ; cytology
9.Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin.
Chunji QUAN ; Moon Kyun CHO ; Yuan SHAO ; Laurel E MIANECKI ; Eric LIAO ; Daniel PERRY ; Taihao QUAN
Protein & Cell 2015;6(12):890-903
Stromal cells provide a crucial microenvironment for overlying epithelium. Here we investigated the expression and function of a stromal cell-specific protein, stromal cell-derived factor-1 (SDF-1), in normal human skin and in the tissues of diseased skin. Immunohistology and laser capture microdissection (LCM)-coupled quantitative real-time RT-PCR revealed that SDF-1 is constitutively and predominantly expressed in dermal stromal cells in normal human skin in vivo. To our surprise, an extremely high level of SDF-1 transcription was observed in the dermis of normal human skin in vivo, evidenced by much higher mRNA expression level than type I collagen, the most abundant and highly expressed protein in human skin. SDF-1 was also upregulated in the tissues of many human skin disorders including psoriasis, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Double immunostaining for SDF-1 and HSP47 (heat shock protein 47), a marker of fibroblasts, revealed that fibroblasts were the major source of stroma-cell-derived SDF-1 in both normal and diseased skin. Functionally, SDF-1 activates the ERK (extracellular-signal-regulated kinases) pathway and functions as a mitogen to stimulate epidermal keratinocyte proliferation. Both overexpression of SDF-1 in dermal fibroblasts and treatment with rhSDF-1 to the skin equivalent cultures significantly increased the number of keratinocyte layers and epidermal thickness. Conversely, the stimulative function of SDF-1 on keratinocyte proliferation was nearly completely eliminated by interfering with CXCR4, a specific receptor of SDF-1, or by knock-down of SDF-1 in fibroblasts. Our data reveal that extremely high levels of SDF-1 provide a crucial microenvironment for epidermal keratinocyte proliferation in both physiologic and pathologic skin conditions.
Adult
;
Cell Proliferation
;
Chemokine CXCL12
;
genetics
;
Epidermal Cells
;
Epidermis
;
pathology
;
Extracellular Signal-Regulated MAP Kinases
;
metabolism
;
Fibroblasts
;
metabolism
;
Gene Expression Regulation
;
Humans
;
Keratinocytes
;
cytology
;
pathology
;
Signal Transduction
;
Skin Diseases
;
genetics
;
pathology
10.Effect of tensile stress on human heel skin fibroblast proliferation in vitro.
Jun-hua LI ; Zhong-ming HUANG ; Shao-hua DU ; Li-gang HUANG
China Journal of Orthopaedics and Traumatology 2014;27(10):838-842
OBJECTIVETo observe the effect of tensile stress on human heel skin fibroblast proliferation in vitro, providing a theoretical basis for preventing the wound edge skin necrosis and nonunion after calcaneal fracture surgery.
METHODSFibroblast cells were taken from lateral heel skin of a 40 year-old-man, then cultured and subcultured in vitro. After that, they were divided into three groups: 0 hours group, 6 hours group and 24 hours group and were tested by tensile stress testing. The levels of TGF-β1 and IL-6 in nutrient fluid were measured. Transmission electron microscope and light microscope was applied for observe mitochondria and nucleus.
RESULTSUnder 10% of the tensile stress, mitochondria decreased, the levels of TGF-β1 and IL-6 in nutrient fluid were decreased and cell proliferation was inhibited gradually with time increasing.
CONCLUSIONThe human lateral heel skin in a long-time tensile stress state is an important cause of wound edge skin necrosis and nonunion after calcaneus fracture surgery.
Adult ; Cell Proliferation ; Cells, Cultured ; Fibroblasts ; chemistry ; cytology ; Heel ; physiology ; Humans ; In Vitro Techniques ; Interleukin-6 ; metabolism ; Male ; Skin ; chemistry ; cytology ; metabolism ; Tensile Strength ; Transforming Growth Factor beta1 ; metabolism

Result Analysis
Print
Save
E-mail