1.Plasma Metabolomic Analysis of Colorectal Cancer Patients with Spleen-Qi Deficiency and Damp-heat Stasis-toxin Syndrome Based on UPLC-Q-Exactive-Orbitrap-MS
Siting MENG ; Lihuiping TAO ; Dong ZHANG ; Qinchang ZHANG ; Yiping FAN ; Haibo CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):130-137
ObjectiveTo observe and analyze the plasma metabolite differences among colorectal cancer patients with spleen-qi deficiency, damp-heat stasis-toxin syndrome(SRYD), non-spleen-qi deficiency, damp-heat stasis-toxin syndrome(non-SRYD), and normal human beings(Normal), aiming to identify unique metabolites specific to SRYD colorectal cancer patients and their potential biomarkers. MethodsBased on the diagnostic criteria of SRYD and non-SRYD colorectal cancer, 30 patients were included, including 10 patients with SRYD colorectal cancer and 20 patients with non-SRYD colorectal cancer, while 10 individuals were recruited for the Normal group. Metabolome sequencing of plasma from the three groups was performed by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap mass spectrometry(UPLC-Q-Exactive-Orbitrap-MS). Multivariate statistical analysis were performed by principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA), and the intergroup differential metabolites were identified based on variable importance in the projection(VIP) value>1 and t-test P<0.05. And pathway enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG) was performed to explore the metabolites and metabolic pathways specific to SRYD colorectal cancer patients. ResultsMetabolome sequencing results showed some differences in metabolic profiles between the groups. A total of 111 plasma differential metabolites were found in the SRYD group and the Normal group, of which 31 were up-regulated and 80 were down-regulated, mainly including stearoyl lysophosphatidylcholine, indole-3-acrylic acid, and dehydroepiandrosterone sulfate(P<0.05). The non-SRYD group exhibited 97 differentially expressed metabolites compared to the Normal group, with 36 up-regulated and 61 down-regulated, mainly including stearoyl lysophosphatidylcholine, sphingosine, and palmitoyl lysophosphatidylcholine(P<0.05). And the SRYD group exhibited 19 differentially expressed metabolites compared to the non-SRYD group, of which 5 were up-regulated and 14 were down-regulated, mainly including dihydrosphingosine, palmitic acid, and linoleoylethanolamide(P<0.05). The significant differential metabolites were subjected to KEGG analysis to obtain significantly enriched metabolic pathways in each group, and the results showed that 11 metabolic pathways such as primary bile acid synthesis, cholesterol metabolism and bile secretion were differential signaling pathways specific to SRYD colorectal cancer. Further retrieval of the above key signaling pathways showed that bile acids were up-regulated in both bile secretion and primary bile acid synthesis pathways, and there was a trend of up-regulation of glycochenodeoxycholic acid, taurochenodeoxycholic acid, and chenodeoxycholic acid. ConclusionPrimary bile acid synthesis, cholesterol metabolism, and bile secretion-related pathways may be differential signaling pathways specific to SRYD colorectal cancer, and bile acid is a core molecule in the metabolic pathway, which can serve as potential biomarkers closely related to the development and progression of SRYD colorectal cancer.
2.Plasma Metabolomic Analysis of Colorectal Cancer Patients with Spleen-Qi Deficiency and Damp-heat Stasis-toxin Syndrome Based on UPLC-Q-Exactive-Orbitrap-MS
Siting MENG ; Lihuiping TAO ; Dong ZHANG ; Qinchang ZHANG ; Yiping FAN ; Haibo CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):130-137
ObjectiveTo observe and analyze the plasma metabolite differences among colorectal cancer patients with spleen-qi deficiency, damp-heat stasis-toxin syndrome(SRYD), non-spleen-qi deficiency, damp-heat stasis-toxin syndrome(non-SRYD), and normal human beings(Normal), aiming to identify unique metabolites specific to SRYD colorectal cancer patients and their potential biomarkers. MethodsBased on the diagnostic criteria of SRYD and non-SRYD colorectal cancer, 30 patients were included, including 10 patients with SRYD colorectal cancer and 20 patients with non-SRYD colorectal cancer, while 10 individuals were recruited for the Normal group. Metabolome sequencing of plasma from the three groups was performed by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap mass spectrometry(UPLC-Q-Exactive-Orbitrap-MS). Multivariate statistical analysis were performed by principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA), and the intergroup differential metabolites were identified based on variable importance in the projection(VIP) value>1 and t-test P<0.05. And pathway enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG) was performed to explore the metabolites and metabolic pathways specific to SRYD colorectal cancer patients. ResultsMetabolome sequencing results showed some differences in metabolic profiles between the groups. A total of 111 plasma differential metabolites were found in the SRYD group and the Normal group, of which 31 were up-regulated and 80 were down-regulated, mainly including stearoyl lysophosphatidylcholine, indole-3-acrylic acid, and dehydroepiandrosterone sulfate(P<0.05). The non-SRYD group exhibited 97 differentially expressed metabolites compared to the Normal group, with 36 up-regulated and 61 down-regulated, mainly including stearoyl lysophosphatidylcholine, sphingosine, and palmitoyl lysophosphatidylcholine(P<0.05). And the SRYD group exhibited 19 differentially expressed metabolites compared to the non-SRYD group, of which 5 were up-regulated and 14 were down-regulated, mainly including dihydrosphingosine, palmitic acid, and linoleoylethanolamide(P<0.05). The significant differential metabolites were subjected to KEGG analysis to obtain significantly enriched metabolic pathways in each group, and the results showed that 11 metabolic pathways such as primary bile acid synthesis, cholesterol metabolism and bile secretion were differential signaling pathways specific to SRYD colorectal cancer. Further retrieval of the above key signaling pathways showed that bile acids were up-regulated in both bile secretion and primary bile acid synthesis pathways, and there was a trend of up-regulation of glycochenodeoxycholic acid, taurochenodeoxycholic acid, and chenodeoxycholic acid. ConclusionPrimary bile acid synthesis, cholesterol metabolism, and bile secretion-related pathways may be differential signaling pathways specific to SRYD colorectal cancer, and bile acid is a core molecule in the metabolic pathway, which can serve as potential biomarkers closely related to the development and progression of SRYD colorectal cancer.
3.The value of coronary artery plaque progression parameters based on coronary CT angiography in predicting prognosis of non-obstructive coronary artery disease
Rui CHEN ; Han JIA ; Changjing FENG ; Siting DONG ; Wangyan LIU ; Shushen LIN ; Xiaomei ZHU ; Yi XU ; Yinsu ZHU
Chinese Journal of Radiology 2024;58(12):1408-1416
Objective:To explore the value of coronary artery plaque progression parameters based on coronary CT angiography (CCTA) in predicting the occurrence of major adverse cardiovascular events (MACE) in patients with non-obstructive coronary artery disease.Methods:The study included clinical, imaging, and prognosis (MACE) parameters of non-obstructive coronary artery disease patients who underwent CCTA at the First Affiliated Hospital of Nanjing Medical University from September 2010 to December 2022. Patients were grouped based on the occurrence of MACE, and differences in clinical data, plaque baseline, and progression parameters between the two groups were compared. Univariate and multivariate Cox regression analyses were employed to identify factors that could effectively predict the occurrence of MACE in patients. Models were constructed using plaque baseline parameters, plaque progression parameters, and a combination of both. The concordance index-time curve, net reclassification improvement and integrated discrimination improvement were used to evaluate the risk stratification ability of the models.Results:A total of 258 patients were included, of whom 62 cases experienced MACE during the follow-up period. In comparison to the MACE(-) group, patients in the MACE(+) group exhibited longer lesion length, greater degree of stenosis, larger plaque total volume, calcified plaque volume, non-calcified plaque volume, fibrous plaque volume, total plaque burden, lipid-rich plaque burden, higher peri-coronary adipose tissue attenuation index (FAI), and annual change of diameter stenosis(ΔDS/y). There were also more cases of coronary artery disease reporting and data system upgrades and non-obstructive progression to obstructive status ( P<0.05). Multivariate Cox analysis revealed that FAI, ΔDS/y, and non-obstructive progression to obstructive status were independent predictors of MACE occurrence. Concordance index-time curve results indicated that the combined model had a better predictive efficacy for MACE in patients with non-obstructive coronary artery disease compared to models based on plaque baseline parameters and plaque progression parameters. Conclusion:The plaque progression parameters and FAI based on CCTA have the potential to predict the high-risk population for MACE in patients with non-obstructive coronary artery disease, demonstrating good risk stratification value.

Result Analysis
Print
Save
E-mail