1.Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway.
Long CHENG ; Lu SHI ; Changhao HE ; Chen WANG ; Yinglan LV ; Huimin LI ; Yongcheng AN ; Yuhui DUAN ; Hongyu DAI ; Huilin ZHANG ; Yan HUANG ; Wanxin FU ; Weiguang SUN ; Baosheng ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):812-829
Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.
Mice
;
Animals
;
Adipose Tissue, Brown
;
Sirtuin 1/pharmacology*
;
Diabetes Mellitus, Type 2/metabolism*
;
AMP-Activated Protein Kinases/metabolism*
;
Morus/metabolism*
;
Flavonoids/metabolism*
;
Prospective Studies
;
Signal Transduction
;
Adipose Tissue, White
;
Plant Leaves
;
Uncoupling Protein 1/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism*
2.Exposure to Electromagnetic Fields from Mobile Phones and Fructose consumption Coalesce to Perturb Metabolic Regulators AMPK/SIRT1-UCP2/FOXO1 in Growing Rats.
Ruchi TRIPATHI ; Sanjay Kumar BANERJEE ; Jay Prakash NIRALA ; Rajani MATHUR
Biomedical and Environmental Sciences 2023;36(11):1045-1058
OBJECTIVE:
In this study, the combined effect of two stressors, namely, electromagnetic fields (EMFs) from mobile phones and fructose consumption, on hypothalamic and hepatic master metabolic regulators of the AMPK/SIRT1-UCP2/FOXO1 pathway were elucidated to delineate the underlying molecular mechanisms of insulin resistance.
METHODS:
Weaned Wistar rats (28 days old) were divided into 4 groups: Normal, Exposure Only (ExpO), Fructose Only (FruO), and Exposure and Fructose (EF). Each group was provided standard laboratory chow ad libitum for 8 weeks . Additionally, the control groups, namely, the Normal and FruO groups, had unrestricted access to drinking water and fructose solution (15%), respectively. Furthermore, the respective treatment groups, namely, the ExpO and EF groups, received EMF exposure (1,760 MHz, 2 h/day x 8 weeks). In early adulthood, mitochondrial function, insulin receptor signaling, and oxidative stress signals in hypothalamic and hepatic tissues were assessed using western blotting and biochemical analysis.
RESULT:
In the hypothalamic tissue of EF, SIRT1, FOXO 1, p-PI3K, p-AKT, Complex III, UCP2, MnSOD, and catalase expressions and OXPHOS and GSH activities were significantly decreased ( P < 0.05) compared to the Normal, ExpO, and FruO groups. In hepatic tissue of EF, the p-AMPKα, SIRT1, FOXO1, IRS1, p-PI3K, Complex I, II, III, IV, V, UCP2, and MnSOD expressions and the activity of OXPHOS, SOD, catalase, and GSH were significantly reduced compared to the Normal group ( P < 0.05).
CONCLUSION
The findings suggest that the combination of EMF exposure and fructose consumption during childhood and adolescence in Wistar rats disrupts the closely interlinked and multi-regulated crosstalk of insulin receptor signals, mitochondrial OXPHOS, and the antioxidant defense system in the hypothalamus and liver.
Humans
;
Rats
;
Animals
;
Adult
;
Rats, Wistar
;
Fructose/metabolism*
;
Catalase
;
Receptor, Insulin/metabolism*
;
AMP-Activated Protein Kinases/metabolism*
;
Electromagnetic Fields/adverse effects*
;
Sirtuin 1/metabolism*
;
Cell Phone
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Forkhead Box Protein O1/metabolism*
;
Uncoupling Protein 2
3.Xixin Decoction improves learning and memory ability of SAMP8 by enhancing neuroprotective effect and inhibiting neuroinflammation.
En-Long ZHAO ; Yong-Chang DIWU ; Hu ZHANG ; Li-Qi DUAN ; Xin-Yue HAN ; Ya-Li WANG ; Yuan ZHOU
China Journal of Chinese Materia Medica 2023;48(18):5032-5040
This study aimed to explore the possible effect of Xixin Decoction(XXD) on the learning and memory ability of Alzheimer's disease(AD) model senescence-accelerated mouse-prone 8(SAMP8) and the related mechanism in enhancing neuroprotective effect and reducing neuroinflammation. Forty SAMP8 were randomly divided into a model group(10 mL·kg~(-1)·d~(-1)), a probiotics group(0.39 g·kg~(-1)·d~(-1)), a high-dose group of XXD granules(H-XXD, 5.07 g·kg~(-1)·d~(-1)), a medium-dose group of XXD granules(M-XXD, 2.535 g·kg~(-1)·d~(-1)), and a low-dose group of XXD granules(L-XXD, 1.267 5 g·kg~(-1)·d~(-1)). Eight senescence-accelerated mouse-resistant 1(SAMR1) of the same age and strain were assigned to the control group(10 mL·kg~(-1)·d~(-1)). After ten weeks of intragastric administration, the Morris water maze was used to test the changes in spatial learning and memory ability of mice after treatment. Meanwhile, immunofluorescence staining was used to detect the positive expression of receptor for advanced glycation end products(AGER), Toll-like receptor 1(TLR1), and Toll-like receptor 2(TLR2) in the hippocampal CA1 region of mice. Western blot was employed to test the protein expression levels of silencing information regulator 2 related enzyme 1(SIRT1), AGER, TLR1, and TLR2 in the hippocampus of mice. Enzyme linked immunosorbent assay(ELISA) was applied to assess the levels of Aβ_(1-42) in the hippocampus of mice and the levels of nuclear factor κB p65(NF-κB p65), NOD-like receptor protein 3(NLRP3), tumor necrosis factor-α(TNF-α), and interleukin-1β(IL-1β) in the serum and hippocampus of mice. Compared with the model group, XXD significantly improved the spatial learning and memory ability of SAMP8, increased the expression of neuroprotective factors in the hippocampus, decreased the levels of neuroinflammatory factors, and inhibited the expression of Aβ_(1-42). In particular, H-XXD significantly increased the expression of SIRT1 in the hippocampus of mice, reduced the expression levels of NF-κB p65, NLRP3, TNF-α, and IL-1β in the serum and hippocampus of mice, and decreased the expression of AGER, TLR1, and TLR2 in the hippocampus of mice(P<0.05 or P<0.01). XXD may improve the spatial learning and memory ability of AD model SAMP8 by enhancing the neuroprotective effect and inhibiting neuroinflammation.
Humans
;
Neuroprotective Agents/therapeutic use*
;
Sirtuin 1/metabolism*
;
Toll-Like Receptor 2/metabolism*
;
NF-kappa B/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Neuroinflammatory Diseases
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Toll-Like Receptor 1/metabolism*
;
Alzheimer Disease/genetics*
;
Hippocampus
4.Role and mechanism of SIRT1 in regulating Nrf2/HO-1 signaling pathway in septic liver injury.
Mengxiao CHEN ; Yiren ZHANG ; Yi WANG ; Tayier GULIFEIRE ; Xiangyou YU
Chinese Critical Care Medicine 2023;35(6):598-603
OBJECTIVE:
To investigate the role and mechanism of silent information regulator 1 (SIRT1) in regulating nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in oxidative stress and inflammatory response to sepsis-induced liver injury.
METHODS:
A total of 24 male Sprague-Dawley (SD) rats were randomly divided into sham operation (Sham) group, cecal ligation and puncture (CLP) group, SIRT1 agonist SRT1720 pretreatment (CLP+SRT1720) group and SIRT1 inhibitor EX527 pretreatment (CLP+EX527) group, with 6 rats in each group. Two hours before operation, SRT1720 (10 mg/kg) or EX527 (10 mg/kg) were intraperitoneally injected into the CLP+SRT1720 group and CLP+EX527 group, respectively. Blood was collected from the abdominal aorta at 24 hours after modeling and the rats were sacrificed for liver tissue. The serum levels of interleukins (IL-6, IL-1β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA). The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by microplate method. Hematoxylin-eosin (HE) staining was used to observe the pathological injury of rats in each group. The levels of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH) and superoxide dismutase (SOD) in liver tissue were detected by corresponding kits. The mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting.
RESULTS:
Compared with the Sham group, the serum levels of IL-6, IL-1β, TNF-α, ALT and AST in the CLP group were significantly increased; histopathological results showed that liver cords were disordered, hepatocytes were swollen and necrotic, and a large number of inflammatory cells infiltrated; the contents of MDA and 8-OHdG in liver tissue increased, while the contents of GSH and SOD decreased; and the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were significantly decreased. These results suggest that sepsis rats have liver dysfunction, and the levels of SIRT1, Nrf2, HO-1 and antioxidant protein in liver tissues were decreased, while the levels of oxidative stress and inflammation were increased. Compared with the CLP group, the levels of inflammatory factors and oxidative stress were significantly decreased in the CLP+SRT1720 group, the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 were significantly increased [IL-6 (ng/L): 34.59±4.21 vs. 61.84±3.78, IL-1β (ng/L): 41.37±2.70 vs. 72.06±3.14, TNF-α (ng/L): 76.43±5.23 vs. 130.85±5.30, ALT (U/L): 30.71±3.63 vs. 64.23±4.59, AST (U/L): 94.57±6.08 vs. 145.15±6.86, MDA (μmol/g): 6.11±0.28 vs. 9.23±0.29, 8-OHdG (ng/L): 117.43±10.38 vs. 242.37±11.71, GSH (μmol/g): 11.93±0.88 vs. 7.66±0.47, SOD (kU/g): 121.58±5.05 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 1.20±0.13 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 1.21±0.12 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 1.71±0.06 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.89±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.87±0.08 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.93±0.14 vs. 0.54±0.12, all P < 0.05], these results indicated that SIRT1 agonist SRT1720 pretreatment could improve liver injury in sepsis rats. However, pretreatment with SIRT1 inhibitor EX527 showed the opposite effect [IL-6 (ng/L): 81.05±6.47 vs. 61.84±3.78, IL-1β (ng/L): 93.89±5.83 vs. 72.06±3.14, TNF-α (ng/L): 177.67±5.12 vs. 130.85±5.30, ALT (U/L): 89.33±9.52 vs. 64.23±4.59, AST (U/L): 179.59±6.44 vs. 145.15±6.86, MDA (μmol/g): 11.39±0.51 vs. 9.23±0.29, 8-OHdG (ng/L): 328.83±11.26 vs. 242.37±11.71, GSH (μmol/g): 5.07±0.34 vs. 7.66±0.47, SOD (kU/g): 59.37±4.28 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 0.34±0.03 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 0.46±0.04 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 0.21±0.03 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.47±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.32±0.07 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.19±0.09 vs. 0.54±0.12, all P < 0.05].
CONCLUSIONS
SIRT1 can inhibit the release of proinflammatory factors and alleviate the oxidative damage of hepatocytes by activating Nrf2/HO-1 signaling pathway, thus playing a protective role against CLP-induced liver injury.
Animals
;
Male
;
Rats
;
Actins/metabolism*
;
Chemical and Drug Induced Liver Injury, Chronic
;
Heme Oxygenase-1/metabolism*
;
Interleukin-6
;
NF-E2-Related Factor 2/metabolism*
;
Rats, Sprague-Dawley
;
RNA, Messenger
;
Sepsis/metabolism*
;
Signal Transduction
;
Sirtuin 1/metabolism*
;
Superoxide Dismutase/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
5.Study on the Protective effect and mechanism of Nicotinamide Riboside on lung injury in paraquat intoxicated mice.
Xing Ken FAN ; Chang Qin XU ; Kai Qiang CAO ; Guang Ju ZHAO ; Guang Liang HONG ; Zhong Qiu LU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(8):561-567
Objective: To investigate the protective effect and mechanism of Nicotinamide Riboside (NR) on lung injury caused by Paraquat intoxicated mice. Methods: Eighty clean male BALB/C mice were selected and averagely divided forty mice into 4 groups with 10 mice in each group, PQ group was given 25% PQ solution (60 mg/kg) by one-time gavage. PQ+NR group were intraperitoneally injected with NR solution (300 mg/kg) 1 hour before given the same amount of PQ solution (60 mg/kg) by one-time gavage, The Control group were given the same amount of saline by one-time gavage, The same amount of NR was intraperitoneally injected before NR group were given saline by one-time gavage. Observed and recorded general condition of PQ intoxicated mice. Observed and recorded the death of mice every half an hour and counted the mortality and drew survival curve of each group after 72 hours exposure. another forty mice were averagely divided and treated by the same way. After 24 hours of modelling, mice were anaesthetized and killed. Then blood was extracted after eyeball was removed. The changes of TNF-a、IL-6 and MPO in serum of mice were detected by ELISA.Two lung tissues were removed from the chest and used to measure the D/W ratio of the lung. The pathological changes of lung were observed and scored under light microscope.The levels of SOD, MDA and Caspase-3 in lung tissues were determined by chemical colorimetry. The expression of Sirt1 and Nrf2 in lung tissues was detected by Western-blot. Results: Compared with the Control group and the NR group, the mice in the PQ group had a poor general condition, such as depression, crouching, skin disorder and reduced activity, food, urine and feces. The symptoms in the PQ+NR group were reduced compared with the PQ group. The survival rate at 72 hours after exposure: 80% in the PQ+NR group and 40% higher than that in the PQ group (P=0.029) . Compared with Control group and NR group, the D/W ratio (0.09±0.07) , lung pathology score under light microscope (11.80±0.37) , TNF-a (39.89±1.48) pg/ml、IL-6 (77.29±2.38) pg/ml、MPO (0.31±0.01) μg/ml、SOD (6.62±0.30) U/mgprot、MDA level (1.21±0.14) mmol/mgprot, Caspase-3 activity (356.00± 27.16) %, Sirt1 and Nrf2 protein expression (1.02±0.14、0.82±0.06) were significantly decreased in PQ group (P=0.004、0.023) ; Compared with PQ group, PQ+NR group significantly increased the D/W ratio (0.10±0.10) , decreased the pulmonary pathology score under light microscope (7.400.51) , decreased TNF-a (33.00± 0.65) pg/ml、IL-6 (52.23±4.23) pg/ml、MPO leve (0.23±0.01) μg/mll, increased SOD leve (9.28±0.45) U/mgprotl, decreased MDA level (0.78±0.02) mmol/mgprot, decreased Caspase-3 activity (222.80±7.59) %, and increased the protein expressions of Sirt1 and Nrf2 (1.62±0.16、1.06±0.04) (P=0.048、0.035) . Conclusion: NR can prolong the survival time of PQ poisoned mice; NR intervention can effectively inhibit the inflammatory response, peroxidation injury and apoptosis of PQ poisoned mice; NR intervention can upregulate the expression of Sirt1 and Nrf2 protein and effectively reduce the lung injury of PQ poisoning.
Animals
;
Caspase 3/metabolism*
;
Interleukin-6/metabolism*
;
Lung
;
Lung Injury/metabolism*
;
Male
;
Mice
;
Mice, Inbred BALB C
;
NF-E2-Related Factor 2/metabolism*
;
Niacinamide/pharmacology*
;
Paraquat/toxicity*
;
Pyridinium Compounds/pharmacology*
;
Sirtuin 1/metabolism*
;
Superoxide Dismutase/metabolism*
6.Inhibiting silence information regulator 2 and glutaminase in the amygdala can improve social behavior in autistic rats.
Xiaoxia ZHANG ; Shizhang LIU ; Xiaomei LIU ; Jieying WANG
Journal of Zhejiang University. Medical sciences 2022;51(6):707-715
OBJECTIVE:
To investigate the underlying molecular mechanisms by which silence information regulator (SIRT) 2 and glutaminase (GLS) in the amygdala regulate social behaviors in autistic rats.
METHODS:
Rat models of autism were established by maternal sodium valproic acid (VPA) exposure in wild-type rats and SIRT2-knockout ( SIRT2 -/-) rats. Glutamate (Glu) content, brain weight, and expression levels of SIRT2, GLS proteins and apoptosis-associated proteins in rat amygdala at different developmental stages were examined, and the social behaviors of VPA rats were assessed by a three-chamber test. Then, lentiviral overexpression or interference vectors of GLS were injected into the amygdala of VPA rats. Brain weight, Glu content and expression level of GLS protein were measured, and the social behaviors assessed.
RESULTS:
Brain weight, amygdala Glu content and the levels of SIRT2, GLS protein and pro-apoptotic protein caspase-3 in the amygdala were increased in VPA rats, while the level of anti-apoptotic protein Bcl-2 was decreased (all P<0.01). Compared with the wild-type rats, SIRT2 -/- rats displayed decreased expression of SIRT2 and GLS proteins in the amygdala, reduced Glu content, and improved social dysfunction (all P<0.01). Overexpression of GLS increased brain weight and Glu content, and aggravated social dysfunction in VPA rats (all P<0.01). Knockdown of GLS decreased brain weight and Glu content, and improved social dysfunction in VPA rats (all P<0.01).
CONCLUSIONS
The glutamate circulatory system in the amygdala of VPA induced autistic rats is abnormal. This is associated with the upregulation of SIRT2 expression and its induced increase of GLS production; knocking out SIRT2 gene or inhibiting the expression of GLS is helpful in maintaining the balanced glutamate cycle and in improving the social behavior disorder of rats.
Animals
;
Rats
;
Amygdala/metabolism*
;
Autistic Disorder/metabolism*
;
Behavior, Animal
;
Disease Models, Animal
;
Glutamates/metabolism*
;
Glutaminase/metabolism*
;
Sirtuin 2/metabolism*
;
Social Behavior
7.Expression of Twist1, SIRT1, FGF2 and TGF-β3 genes and its regulatory effect on the proliferation of placenta, umbilical cord and dental pulp mesenchymal stem cells.
Yao TAN ; Yin DENG ; Keyou PENG ; Zhengzhou SUN ; Jianqiu HUANG ; Xuntong GU ; Fusheng ZHANG ; Hanqing PENG ; Xuechao ZHANG ; Rong ZHANG
Chinese Journal of Medical Genetics 2021;38(2):117-122
OBJECTIVE:
To compare the mRNA level of cell proliferation-related genes Twist1, SIRT1, FGF2 and TGF-β3 in placenta mesenchymal stem cells (PA-MSCs), umbilical cord mensenchymals (UC-MSCs) and dental pulp mesenchymal stem cells (DP-MSCs).
METHODS:
The morphology of various passages of PA-MSCs, UC-MSCs and DP-MSCs were observed by microscopy. Proliferation and promoting ability of the three cell lines were detected with the MTT method. Real-time PCR (RT-PCR) was used to determine the mRNA levels of Twist1, SIRT1, FGF2, TGF-β3.
RESULTS:
The morphology of UC-MSCs and DP-MSCs was different from that of PA-MSCs. Proliferation ability and promoting ability of the PA-MSCs was superior to that of UC-MSCs and DP-MSCs. In PA-MSCs, expression level of Twist1 and TGF-β3 was the highest and FGF2 was the lowest. SIRT1 was highly expressed in UC-MSCs. With the cell subcultured, different expression levels of Twist1, SIRT1, FGF2, TGF-β3 was observed in PA-MSCs, UC-MSCs and DP-MSCs.
CONCLUSION
Up-regulated expression of the Twist1, SIRT1 and TGF-β3 genes can promote proliferation of PA-MSCs, UC-MSCs and DP-MSCs, whilst TGF-β3 may inhibit these. The regulatory effect of Twist1, SIRT1, FGF2 and TGF-β3 genes on PA-MSCs, UC-MSCs and DP-MSCs are different.
Cell Differentiation
;
Cell Proliferation/genetics*
;
Cells, Cultured
;
Dental Pulp/cytology*
;
Female
;
Fibroblast Growth Factor 2/genetics*
;
Humans
;
Mesenchymal Stem Cells/cytology*
;
Nuclear Proteins/genetics*
;
Placenta/cytology*
;
Pregnancy
;
Sirtuin 1/genetics*
;
Transforming Growth Factor beta3/genetics*
;
Twist-Related Protein 1/genetics*
;
Umbilical Cord/cytology*
8.Particulate matter 2.5 triggers airway inflammation and bronchial hyperresponsiveness in mice by activating the SIRT2-p65 pathway.
Manling LIU ; Zhaoling SHI ; Yue YIN ; Yishi WANG ; Nan MU ; Chen LI ; Heng MA ; Qiong WANG
Frontiers of Medicine 2021;15(5):750-766
Exposure to particulate matter 2.5 (PM2.5) potentially triggers airway inflammation by activating nuclear factor-κB (NF-κB). Sirtuin 2 (SIRT2) is a key modulator in inflammation. However, the function and specific mechanisms of SIRT2 in PM2.5-induced airway inflammation are largely understudied. Therefore, this work investigated the mechanisms of SIRT2 in regulating the phosphorylation and acetylation of p65 influenced by PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Results revealed that PM2.5 exposure lowered the expression and activity of SIRT2 in bronchial tissues. Subsequently, SIRT2 impairment promoted the phosphorylation and acetylation of p65 and activated the NF-κB signaling pathway. The activation of p65 triggered airway inflammation, increment of mucus secretion by goblet cells, and acceleration of tracheal stenosis. Meanwhile, p65 phosphorylation and acetylation, airway inflammation, and bronchial hyperresponsiveness were deteriorated in SIRT2 knockout mice exposed to PM2.5. Triptolide (a specific p65 inhibitor) reversed p65 activation and ameliorated PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Our findings provide novel insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure. Triptolide inhibition of p65 phosphorylation and acetylation could be an effective therapeutic approach in averting PM2.5-induced airway inflammation and bronchial hyperresponsiveness.
Animals
;
Inflammation
;
Mice
;
NF-kappa B/metabolism*
;
Particulate Matter/toxicity*
;
Signal Transduction
;
Sirtuin 2/metabolism*
;
Transcription Factor RelA/metabolism*
9.Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes
Nutrition Research and Practice 2019;13(1):3-10
BACKGROUND/OBJECTIVES: The NAD+ precursor nicotinamide riboside (NR) is a type of vitamin B3 found in cow's milk and yeast-containing food products such as beer. Recent studies suggested that NR prevents hearing loss, high-fat diet-induced obesity, Alzheimer's disease, and mitochondrial myopathy. The objective of this study was to investigate the effects of NR on inflammation and mitochondrial biogenesis in AML12 mouse hepatocytes. MATERIALS/METHODS: A subset of hepatocytes was treated with palmitic acid (PA; 250 µM) for 48 h to induce hepatocyte steatosis. The hepatocytes were treated with NR (10 µM and 10 mM) for 24 h with and without PA. The cell viability and the levels of sirtuins, inflammatory markers, and mitochondrial markers were analyzed. RESULTS: Cytotoxicity of NR was examined by PrestoBlue assay. Exposure to NR had no effect on cell viability or morphology. Gene expression of sirtuin 1 (Sirt1) and Sirt3 was significantly upregulated by NR in PA-treated hepatocytes. However, Sirt1 activities were increased in hepatocytes treated with low-dose NR. Hepatic pro-inflammatory markers including tumor necrosis factor-alpha and interleukin-6 were decreased in NR-treated cells. NR upregulated anti-inflammatory molecule adiponectin, and, tended to down-regulate hepatokine fetuin-A in PA-treated hepatocytes, suggesting its inverse regulation on these cytokines. NR increased levels of mitochondrial markers including peroxisome proliferator-activated receptor γ coactivator-1α, carnitine palmitoyltransferase 1, uncoupling protein 2, transcription factor A, mitochondrial and mitochondrial DNA in PA-treated hepatocytes. CONCLUSIONS: These data demonstrated that NR attenuated hepatic inflammation and increased levels of mitochondrial markers in hepatocytes.
Adiponectin
;
alpha-2-HS-Glycoprotein
;
Alzheimer Disease
;
Animals
;
Beer
;
Carnitine O-Palmitoyltransferase
;
Cell Survival
;
Cytokines
;
DNA, Mitochondrial
;
Fatty Liver
;
Gene Expression
;
Hearing Loss
;
Hepatocytes
;
Inflammation
;
Interleukin-6
;
Mice
;
Milk
;
Mitochondria
;
Mitochondrial Myopathies
;
Niacin
;
Niacinamide
;
Obesity
;
Organelle Biogenesis
;
Palmitic Acid
;
Peroxisomes
;
Sirtuin 1
;
Sirtuins
;
Transcription Factors
;
Tumor Necrosis Factor-alpha
10.Ginsenoside Rg_1 induces leukemia stem cell senescence via SIRT1/TSC_2 signal axis.
Yan-Long TANG ; Yue ZHOU ; Cheng-Gui ZHANG ; Heng LIU ; Ya-Ping WANG ; Yuan LI ; Yan-Jun HAN ; Cui-Li WANG
China Journal of Chinese Materia Medica 2019;44(11):2348-2352
The aim of this paper was to investigate the effect of SIRT1/TSC_2 signal axis on leukemia stem cell senescence induced by ginsenoside Rg_1. CD34~+CD38~- leukemia stem cells(CD34~+CD38~-LSCs) was isolated by magnetic cell sorting(MACS) and divided into two groups. The control group cells were routinely cultured, 40 μmol·L~(-1) ginsenoside Rg_1 was added to the control group for co-culture in Rg_1 group. The effect of Rg_l to induce CD34~+CD38~-LSCs senescence were evaluated by senescence-associated β-Galactosidase(SA-β-Gal) staining, cell cycle assay, CCK-8 and Colony-Assay. The expression of senescence associated SIRT1, TSC_2 mRNA and protein was examined by Real-time fluorescence quantitative PCR(FQ-PCR) and Western blot. The results showed that the CD34~+CD38~-LSCs could effectively be isolated by MACS, and the purity of CD34~+CD38~-LSCs is up to(95.86±3.04)%. Compared with the control group, the percentage of positive cells expressed SA-β-Gal in the Rg_1 group is increased, the senescence morphological changes were observed in the CD34~+CD38~-LSCs in the Rg_1 group. The proliferation inhibition rate and the number of cells entered G_0/G_1 phase in the Rg_1 group were increased, but the colony-formed ability was decreased, Rg_1 could significantly inhibit the proliferation and self-renewal ability of CD34~+CD38~-LSCs. The expression of SIRT1 and TSC_2 mRNA and protein were down regulated in the Rg_1 group compared with the control group. Our research implied that Rg_1 may induce the senescence of CD34~+CD38~-LSCs and SIRT1/TSC_2 signal axis plays a significant role in this process.
Cellular Senescence
;
drug effects
;
Ginsenosides
;
pharmacology
;
Humans
;
Leukemia, Myeloid, Acute
;
Neoplastic Stem Cells
;
drug effects
;
Signal Transduction
;
Sirtuin 1
;
metabolism
;
Tuberous Sclerosis Complex 2 Protein
;
metabolism
;
Tumor Cells, Cultured

Result Analysis
Print
Save
E-mail