1.Research progress on mTOR signaling pathway and regulatory T cell nutrition metabolic regulation mechanism.
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):69-73
In the tumor microenvironment, metabolic reprogramming can impact metabolic characteristics of T cells, thus inducing immunosuppression to promote tumor immune escape. The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in regulating diverse functions of various immune cells. This review mainly focuses on the molecular mechanism of mTOR signaling in regulating cellular energy metabolism process, and the activation status of mTOR signaling under different nutritional environments. In addition, it also summarizes the role of the mTOR signaling in regulatory T cell (Tregs) metabolism and function in current studies, and evaluates the potential of mTOR as a clinical immunotherapeutic target and its current application challenges.
Immunosuppression Therapy
;
Metabolic Reprogramming
;
Signal Transduction
;
Sirolimus
;
T-Lymphocytes, Regulatory
;
TOR Serine-Threonine Kinases
;
Humans
2.Impairment of Autophagic Flux After Hypobaric Hypoxia Potentiates Oxidative Stress and Cognitive Function Disturbances in Mice.
Shuhui DAI ; Yuan FENG ; Chuanhao LU ; Hongchen ZHANG ; Wenke MA ; Wenyu XIE ; Xiuquan WU ; Peng LUO ; Lei ZHANG ; Fei FEI ; Zhou FEI ; Xia LI
Neuroscience Bulletin 2024;40(1):35-49
Acute hypobaric hypoxic brain damage is a potentially fatal high-altitude sickness. Autophagy plays a critical role in ischemic brain injury, but its role in hypobaric hypoxia (HH) remains unknown. Here we used an HH chamber to demonstrate that acute HH exposure impairs autophagic activity in both the early and late stages of the mouse brain, and is partially responsible for HH-induced oxidative stress, neuronal loss, and brain damage. The autophagic agonist rapamycin only promotes the initiation of autophagy. By proteome analysis, a screen showed that protein dynamin2 (DNM2) potentially regulates autophagic flux. Overexpression of DNM2 significantly increased the formation of autolysosomes, thus maintaining autophagic flux in combination with rapamycin. Furthermore, the enhancement of autophagic activity attenuated oxidative stress and neurological deficits after HH exposure. These results contribute to evidence supporting the conclusion that DNM2-mediated autophagic flux represents a new therapeutic target in HH-induced brain damage.
Mice
;
Animals
;
Hypoxia
;
Oxidative Stress
;
Autophagy
;
Cognition
;
Sirolimus/therapeutic use*
3.Gene mutations meet targeted therapy: Sirolimus therapy for a case of RAD50 and POLE deficient Klippel-Trenaunay syndrome in a Filipino infant
Hans Elmund F. Alitin ; Wilsie Salas-Walinsundin ; Andrea Marie Bernales-Mendoza ; Jay-v James G. Barit ; Vilma C. Ramilo
Journal of the Philippine Dermatological Society 2024;33(Suppl 1):32-32
Klippel-Trenaunay syndrome (KTS) is a rare slow-flow congenital vascular disorder with an incidence of 1:100,000. 1 , 2 KTS is classically characterized by a clinical triad of capillary malformation, venous malformation, and bony or soft tissue hypertrophy. RAD50 and POLE genes act directly on deoxyribonucleicacid (DNA) and genome stability. Although distinct from the more studiedphosphatidylinositol-4,5-bisphosphate3-kinase catalytic subunit alpha (PIK3CA)gene, RAD50 and POLE genes coexist as a deficient gene in few vascular malformations and papillary thyroid carcinoma (PTC).
This is a case of a 7-month-old Filipino female patient clinically and radiologically diagnosed as KTS presenting with multiple capillary malformations and left limb length-girth discrepancies. Dermoscopy showed various vessel patterns in all affected areas. Soft tissue ultrasound and magnetic resonance imaging/angiography (MRI/MRA) of the left extremities revealed subcutaneous capillary malformations, hypertrophy of the subcutaneous structures and compartment muscles. Strong family history of PTC was elicited and genetic sequencing revealed detected RAD50 and POLE genes. She was treated using the mammalian target of rapamycin inhibitor sirolimus with careful monitoring of trough levels and radiographic tests. A significant outcome one year post-sirolimus revealed no abnormal vessels on ultrasound, a lesser degree of hypertrophy and capillary malformations were no longer appreciated in MRI/MRA of left extremities. Port-wine stains (PWS) and affected limbs showed a decrease in erythema and growth rate during the treatment period.
KTS detected with RAD50 and POLE genes successfully treated with sirolimus with trough-level monitoring. Radiographic evaluation and regular anthropometric assessment remain valuable in the diagnosis and monitoring.
Human ; Female ; Infant: 1-23 Months ; Klippel-trenaunay-weber Syndrome ; Sirolimus
4.A novel biodegradable polymer-coated sirolimus-eluting stent: 1-year results of the HELIOS registry.
Bo ZHENG ; Yi LIU ; Ruining ZHANG ; Wangwei YANG ; Fangju SU ; Rutao WANG ; Dapeng CHEN ; Guidong SHEN ; Yumin QIU ; Lianmin WANG ; Chang CHEN ; Zhongwei WU ; Fei LI ; Jiayi LI ; Chengxiang LI ; Chao GAO ; Ling TAO
Chinese Medical Journal 2023;136(15):1848-1854
BACKGROUND:
The HELIOS stent is a sirolimus-eluting stent with a biodegradable polymer and titanium oxide film as the tie-layer. The study aimed to evaluate the safety and efficacy of HELIOS stent in a real-world setting.
METHODS:
The HELIOS registry is a prospective, multicenter, cohort study conducted at 38 centers across China between November 2018 and December 2019. A total of 3060 consecutive patients were enrolled after application of minimal inclusion and exclusion criteria. The primary endpoint was target lesion failure (TLF), defined as a composite of cardiac death, non-fatal target vessel myocardial infarction (MI), and clinically indicated target lesion revascularization (TLR) at 1-year follow-up. Kaplan-Meier methods were used to estimate the cumulative incidence of clinical events and construct survival curves.
RESULTS:
A total of 2998 (98.0%) patients completed the 1-year follow-up. The 1-year incidence of TLF was 3.10% (94/2998, 95% closed interval: 2.54-3.78%). The rates of cardiac death, non-fatal target vessel MI and clinically indicated TLR were 2.33% (70/2998), 0.20% (6/2998), and 0.70% (21/2998), respectively. The rate of stent thrombosis was 0.33% (10/2998). Age ≥60 years, diabetes mellitus, family history of coronary artery disease, acute myocardial infarction at admission, and device success were independent predictors of TLF at 1 year.
CONCLUSION:
The 1-year incidence rates of TLF and stent thrombosis were 3.10% and 0.33%, respectively, in patients treated with HELIOS stents. Our results provide clinical evidence for interventional cardiologists and policymakers to evaluate HELIOS stent.
CLINICAL TRIAL REGISTRATION
ClinicalTrials.gov, NCT03916432.
Humans
;
Middle Aged
;
Sirolimus/therapeutic use*
;
Drug-Eluting Stents/adverse effects*
;
Prospective Studies
;
Cohort Studies
;
Treatment Outcome
;
Risk Factors
;
Time Factors
;
Percutaneous Coronary Intervention/adverse effects*
;
Cardiovascular Agents/therapeutic use*
;
Coronary Artery Disease/therapy*
;
Myocardial Infarction/etiology*
;
Thrombosis/complications*
;
Polymers
;
Registries
5.Rapamycin mediated caspase 9 homodimerization to safeguard human pluripotent stem cell therapy.
Yang YANG ; Yang LIU ; Min CHEN ; Shuangpeng LI ; Xuan LU ; Yu HE ; Kun ZHANG ; Qingjian ZOU
Chinese Journal of Biotechnology 2023;39(10):4098-4107
Human induced pluripotent stem cells (hiPSCs) are promising in regenerative medicine. However, the pluripotent stem cells (PSCs) may form clumps of cancerous tissue, which is a major safety concern in PSCs therapies. Rapamycin is a safe and widely used immunosuppressive pharmaceutical that acts through heterodimerization of the FKBP12 and FRB fragment. Here, we aimed to insert a rapamycin inducible caspase 9 (riC9) gene in a safe harbor AAVS1 site to safeguard hiPSCs therapy by drug induced homodimerization. The donor vector containing an EF1α promoter, a FRB-FKBP-Caspase 9 (CARD domain) fusion protein and a puromycin resistant gene was constructed and co-transfected with sgRNA/Cas9 vector into hiPSCs. After one to two weeks screening with puromycin, single clones were collected for genotype and phenotype analysis. Finally, rapamycin was used to induce the homodimerization of caspase 9 to activate the apoptosis of the engineered cells. After transfection of hiPSCs followed by puromycin screening, five cell clones were collected. Genome amplification and sequencing showed that the donor DNA has been precisely knocked out at the endogenous AAVS1 site. The engineered hiPSCs showed normal pluripotency and proliferative capacity. Rapamycin induced caspase 9 activation, which led to the apoptosis of all engineered hiPSCs and its differentiated cells with different sensitivity to drugs. In conclusion, we generated a rapamycin-controllable hiPSCs survival by homodimerization of caspase 9 to turn on cell apoptosis. It provides a new strategy to guarantee the safety of the hiPSCs therapy.
Humans
;
Induced Pluripotent Stem Cells
;
Sirolimus/metabolism*
;
Caspase 9/metabolism*
;
RNA, Guide, CRISPR-Cas Systems
;
Pluripotent Stem Cells/metabolism*
;
Cell Differentiation
;
Puromycin/metabolism*
6.Preliminary Study on the Effect of Silencing Nucleostemin Com- bined with Rapamycin on Autophagy and Apoptosis of HL-60 Cells.
Ya-Qi WANG ; Xiao-Juan GAO ; Bao-Hong YUE
Journal of Experimental Hematology 2023;31(6):1629-1634
OBJECTIVE:
To investigate the effects of knocking down nucleostemin ( NS) combined with rapamycin (RAPA) on autophagy and apoptosis in HL-60 cells , and to explore its role in HL-60 cells .
METHODS:
The expression of NS protein was detected using Western blot , after transfection of HL-60 cells was achieved by the recombinant lentviral vector NS -RNAi-GV248 . Flow cytometry was used to detect changes in cells apoptosis after NS silencing/ rapamycin for 24 , 48 hours , and the expressions of NS , LC3 , p62 , BCL-2 and Bax proteins in cells were detected by Western blot.
RESULTS:
The expression of NS in HL-60 cells was successfully down-regulated by recombinant lentiviral vector. After treatment with rapamycin for 24 and 48 h , the apoptosis rate of cells in each group increased (P < 0.05) , and the apoptosis was more obvious at 48 hours . Compared with the NS silencing group or rapamycin group , after treated with NS down-regulation combined with rapamycin for 48 hours , the apoptosis of HL-60 cells was significantly increased ( P < 0.05 ) , LC3 -II/LC3 -I ratio was significantly increased ( P < 0.05 ) , p62 protein expression was significantly decreased (P < 0.05) , and BCL-2/Bax ratio was significantly decreased ( P < 0.05) .
CONCLUSION
NS down-regulation combined with rapamycin can enhance the apoptosis and autophagy of HL-60 cells , and the induction of apoptosis of HL-60 cells may be related to the expression of BCL-2 and Bax proteins .
Humans
;
HL-60 Cells
;
Sirolimus/pharmacology*
;
bcl-2-Associated X Protein
;
Autophagy
;
Apoptosis
7.Emodin Ameliorates High Glucose-Induced Podocyte Apoptosis via Regulating AMPK/mTOR-Mediated Autophagy Signaling Pathway.
Hong LIU ; Wei-Dong CHEN ; Yang-Lin HU ; Wen-Qiang YANG ; Tao-Tao HU ; Huan-Lan WANG ; Yan-Min ZHANG
Chinese journal of integrative medicine 2023;29(9):801-808
OBJECTIVE:
To investigate the effect of emodin on high glucose (HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)-mediated autophagy in podocytes (MPC5 cells) in vitro.
METHODS:
MPC5 cells were treated with different concentrations of HG (2.5, 5, 10, 20, 40, 80 and 160 mmol/L), emodin (2, 4, 8 µ mol/L), or HG (40 mmol/L) and emodin (4 µ mol/L) with or without rapamycin (Rap, 100 nmol/L) and compound C (10 µ mol/L). The viability and apoptosis of MPC5 cells were detected using cell counting kit-8 (CCK-8) assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy marker light chain 3 (LC3) I/II, and AMPK/mTOR signaling pathway-related proteins were determined by Western blot. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy.
RESULTS:
HG at 20, 40, 80 and 160 mmol/L dose-dependently induced cell apoptosis in MPC5 cells, whereas emodin (4 µ mol/L) significantly ameliorated HG-induced cell apoptosis and caspase-3 cleavage (P<0.01). Emodin (4 µ mol/L) significantly increased LC3-II protein expression levels and induced RFP-LC3-containing punctate structures in MPC5 cells (P<0.01). Furthermore, the protective effects of emodin were mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 µ mol/L) reversed emodin-induced autophagy activation.
CONCLUSION
Emodin ameliorated HG-induced apoptosis of MPC5 cells in vitro that involved induction of autophagy through the AMPK/mTOR signaling pathway, which might provide a potential therapeutic option for diabetic nephropathy.
Emodin/pharmacology*
;
AMP-Activated Protein Kinases/metabolism*
;
Podocytes
;
Caspase 3/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Signal Transduction
;
Apoptosis
;
Sirolimus/pharmacology*
;
Glucose/metabolism*
;
Autophagy
8.Role of PI3K/Akt/mTOR pathway-mediated macrophage autophagy in affecting the phenotype transformation of lung fibroblasts induced by silica dust exposure.
Yue DU ; Fangcai HUANG ; Lan GUAN ; Ming ZENG
Journal of Central South University(Medical Sciences) 2023;48(8):1152-1162
OBJECTIVES:
The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the main signaling pathways related to autophagy. Autophagy plays a key role in the formation of silicosis fibrosis. The phenotypic transformation of lung fibroblasts into myofibroblasts is a hallmark of the transition from the inflammatory phase to the fibrotic phase in silicosis. This study aims to investigate whether the PI3K/Akt/mTOR pathway affects the phenotypic transformation of silicosis-induced lung fibroblasts into myofibroblasts via mediating macrophage autophagy.
METHODS:
The human monocytic leukemia cell line THP-1 cells were differentiated into macrophages by treating with 100 ng/mL of phorbol ester for 24 h. Macrophages were exposed to different concentrations (0, 25, 50, 100, 200, 400 μg/mL) and different times (0, 6, 12, 24, 48 h) of SiO2 dust suspension. The survival rate of macrophages was measured by cell counting kit-8 (CCK-8) method. Enzyme linked immunosorbent assay (ELISA) was used to measure the contents of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) in the cell supernatant. The co-culture system of macrophages and HFL-1 cells was established by transwell. A blank control group, a SiO2 group, a LY294002 group, a SC79 group, a LY294002+SiO2 group, and a SC79+SiO2 group were set up in this experiment. Macrophages in the LY294002+SiO2 group were pretreated with LY294002 (PI3K inhibitor) for 18 hours, and macrophages in the SC79+SiO2 group were pretreated with SC79 (Akt activator) for 24 hours, and then exposed to SiO2 (100 μg/mL) dust suspension for 12 hours. The expression of microtubule-associated protein 1 light chain 3 (LC3) protein in macrophages was detected by the immunofluorescence method. The protein expressions of PI3K, Akt, mTOR, Beclin-1, LC3 in macrophages, and collagen III (Col III), α-smooth muscle actin (α-SMA), fibronectin (FN), matrix metalloproteinase-1 (MMP-1), tissue metalloproteinase inhibitor-1 (TIMP-1) in HFL-1 cells were measured by Western blotting.
RESULTS:
After the macrophages were exposed to SiO2 dust suspension of different concentrations for 12 h, the survival rates of macrophages were gradually decreased with the increase of SiO2 concentration. Compared with the 0 μg/mL group, the survival rates of macrophages in the 100, 200, and 400 μg/mL groups were significantly decreased, and the concentrations of TGF-β1 and TNF-α in the cell supernatant were obviously increased (all P<0.05). When 100 μg/mL SiO2 dust suspension was applied to macrophages, the survival rates of macrophages were decreased with the prolonged exposure time. Compared with the 0 h group, the survival rates of macrophages were significantly decreased (all P<0.05), the concentrations of TGF-β1 and TNF-α in the cell supernatant were significantly increased, and the protein expression levels of Beclin-1 and LC3II were increased markedly in the 6, 12, 24, and 48 h groups (all P<0.05). Immunofluorescence results demonstrated that after exposure to SiO2 (100 μg/mL) dust for 12 h, LC3 exhibited punctate aggregation and significantly higher fluorescence intensity compared to the blank control group (P<0.05). Compared with the blank control group, the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated in the SiO2 group (all P<0.05). Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were down-regulated and the protein expressions of LC3II and Beclin-1 were up-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were decreased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were down-regulated (all P<0.05) in the LY294002+SiO2 group. Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were up-regulated and the protein expressions of LC3II and Beclin-1 were down-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were increased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated (all P<0.05) in the SC79+SiO2 group.
CONCLUSIONS
Silica dust exposure inhibits the PI3K/Akt/mTOR pathway, increases autophagy and concentration of inflammatory factors in macrophages, and promotes the phenotype transformation of HFL-1 cells into myofibroblasts. The regulation of the PI3K/Akt/mTOR pathway can affect the autophagy induction and the concentration of inflammatory factors of macrophages by silica dust exposure, and then affect the phenotype transformation of HFL-1 cells into myofibroblasts induced by silica dust exposure.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Silicon Dioxide/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Matrix Metalloproteinase 1/metabolism*
;
Tissue Inhibitor of Metalloproteinase-1
;
Sirolimus
;
Beclin-1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Dust
;
TOR Serine-Threonine Kinases/metabolism*
;
Lung/metabolism*
;
Fibroblasts/metabolism*
;
Silicosis/metabolism*
;
Macrophages/metabolism*
;
Autophagy
9.Synergistic Antitumor Effect of Everolimus Combined with Gemcitabine on Diffuse Large B-Cell Lymphoma.
Xiu-Qin ZUO ; Chun-Lian TAN ; Xiao-Ming LI ; Tao MA
Journal of Experimental Hematology 2023;31(1):81-88
OBJECTIVE:
To investigate the effects of mTOR inhibitors everolimus (EVE) and gemcitabine (GEM) on the proliferation, apoptosis and cell cycle of diffuse large B-cell lymphoma (DLBCL) cell line U2932, and further explore the molecular mechanisms, so as to provide new ideas and experimental basis for the clinical treatment of DLBCL.
METHODS:
The effect of EVE and GEM on the proliferation of U2932 cells was detected by CCK-8 assay, the IC50 of the two drugs was calculated, and the combination index (CI=) of the two drugs was calculated by CompuSyn software. The effect of EVE and GEM on apoptosis of U2932 cells was detected by flow cytometry with AnnexinV-FITC/PI staining. Flow cytometry with propidium iodide (PI) staining was used to detect the effect of EVE and GEM on the cell cycle of U2932 cells. Western blot assay was used to detect the effects of EVE and GEM on the channel proteins p-mTOR and p-4EBP1, the anti-apoptotic proteins MCL-1 and Survivin, and the cell cycle protein Cyclin D1.
RESULTS:
Both EVE and GEM could significantly inhitbit the proliferation of U2932 cells in a time- and dose-dependent manner (r=0.465, 0.848; 0.555, 0.796). According to the calculation of CompuSyn software, EVE combined with GEM inhibited the proliferation of U2932 cells at 24, 48 and 72 h with CI=<1, which had a synergistic effect. After treated U2932 cells with 10 nmol/L EVE, 250 nmol/L GEM alone and in combination for 48 h, both EVE and GEM induced apoptosis, and the difference was statistically significant compared with the control group (P<0.05). The apoptosis rate was significantly enhanced after EVE in combination with GEM compared with single-agent (P<0.05). Both EVE and GEM alone and in combination significantly increased the proportion of cells in G1 phase compared with the control group (P<0.05). The proportion of cells in G1 phase was significantly increased when the two drugs were combined (P<0.05). The expression of p-mTOR and effector protein p-4EBP1 was significantly downregulated in the EVE combined with GEM group, the expression of anti-apoptotic proteins MCL-1, Survivin and cell cycle protein cyclin D1 was downregulated too (P<0.05).
CONCLUSION
EVE combined with GEM can synergistically inhibit the proliferation of U2932 cells, and the mechanism may be that they can synergistically induce apoptosis by downregulating the expression of MCL-1 and Survivin proteins and block the cell cycle progression by downregulating the expression of Cyclin D1.
Humans
;
Gemcitabine
;
Everolimus/pharmacology*
;
Survivin/pharmacology*
;
Cyclin D1/pharmacology*
;
Myeloid Cell Leukemia Sequence 1 Protein
;
Cell Line, Tumor
;
Cell Proliferation
;
TOR Serine-Threonine Kinases
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
Cell Cycle Proteins
;
Lymphoma, Large B-Cell, Diffuse
10.Increased autophagy of peripheral blood neutrophils and neutrophils extracellular traps formation in systemic lupus erythematosus.
Dongmei YANG ; Jing ZHU ; Jianbo XIAO ; Rendong HE ; Yan XING
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):356-362
Objective To explore the role of autophagy, apoptosis of neutrophils and neutrophils extracellular traps (NET) formation in systemic lupus erythematosus (SLE). Methods Thirty-six patients with SLE were recruited as research subjects, and 32 healthy controls matched accordingly were enrolled as control subjects. The expression levels of microtubule associated protein 1 light chain 3B (LC3B), autophagy-related gene5(ATG5), P62, B-cell lymphoma 2(Bcl2), Bcl2-related X protein (BAX) in neutrophils were detected by Western blot analysis. Flow cytometry was employed to analyze the expression of LC3B on neutrophils. The expression level of myeloperoxidase(MPO) in plasma was estimated by ELISA. Furthermore, neutrophils were cultured in vitro and stimulated by 100 nmol/L rapamycin and 10 μg/mL lipopolysaccharide (LPS) for 6 hours, respectively. And then, the expression levels of LC3B, ATG5, P62, Bcl2 and BAX in neutrophils were detected by Western blot analysis. The level of MPO in culture supernatant was detected by ELISA. The change of fluorescence intensity of NET in culture supernatant was assayed by SytoxTM Green staining combined with fluorescence spectrophotometry. Results Compared with healthy controls, the levels of autophagy and apoptosis of neutrophils and NET formation in SLE patients were increased. The level of apoptosis and NET formation was positively associated with neutrophil autophagy. The level of autophagy showed an increase but had no effect on apoptosis and NET formation for neutrophil stimulated by rapamycin. The levels of autophagy and NET formation also increased with no significant effect on apoptosis for neutrophil induced by LPS. Conclusion The autophagy, apoptosis and NET formation of neutrophils increase in SLE patients. The activation of autophagy and NET in neutrophils possibly result from the inflammatory internal environment in SLE patients.
Humans
;
Neutrophils
;
Extracellular Traps/metabolism*
;
Lipopolysaccharides/pharmacology*
;
bcl-2-Associated X Protein/metabolism*
;
Sirolimus/pharmacology*
;
Lupus Erythematosus, Systemic
;
Autophagy


Result Analysis
Print
Save
E-mail