1.Silver nanoparticles-resistance of HeLa cell associated with its unusually high concentration of α-ketoglutarate and glutathione.
Heming CHEN ; Yujing HE ; Xueqing CHEN ; Fuchang DENG ; Zhisong LU ; Yingshuai LIU ; Huamao DU
Chinese Journal of Biotechnology 2023;39(10):4189-4203
Silver nanoparticles (AgNPs) is known as one of the most valuable metal nanoparticles in antibacterial and anticancer application. AgNPs-resistant bacteria has been documented, but it is unclear whether cancer cells can also escape the anti-cancer effect of AgNPs. In this study, we aimed to investigate this phenomenon and its underlying mechanism. The antibacterial activity and cytotoxicity of AgNPs were measured in the presence of HeLa cell metabolites. The status of AgNPs in the system associated with metabolites were characterized by UV-Vis, Zetasizer Nano ZS, and transmission electron microscopy. Non-targeted metabolomics was used to reveal the metabolites components that bind with AgNPs. HeLa cells were injected intraperitoneally to establish the tumor-bearing mice model, and the stability of AgNPs in mice serum was analyzed. The results manifested that HeLa cell metabolites inhibited the anticancer and antibacterial effects of AgNPs in a dose-dependent manner by causing AgNPs aggregation. Effective metabolites that inhibited the biological activity of AgNPs were stable in 100 ℃, insoluble in chloroform, containing sulfur elements, and had a molecular weight less than 1 kDa in molecular weight. There were 115 compounds bound with AgNPs. In vitro experiments showed that AgNPs aggregation occurred only when the concentration of α-ketoglutarate (AKG) and glutathione (GSH) together reached a certain threshold. Interestingly, the concentration of AKG and GSH in HeLa cellular metabolites was 10 and 6 times higher than that in normal cervical epithelial cells, respectively, which explained why the threshold was reached. Furthermore, the stability of AgNPs in the serum of tumor-bearing mice decreased by 20% (P < 0.05) compared with the healthy mice. In conclusion, our study demonstrates that HeLa cells escaped the anti-cancer effect of AgNPs through the synergistic effect of AKG and GSH, suggesting the need to develop strategies to overcome this limitation.
Humans
;
Animals
;
Mice
;
HeLa Cells
;
Silver/pharmacology*
;
Ketoglutaric Acids/pharmacology*
;
Metal Nanoparticles
;
Anti-Bacterial Agents/pharmacology*
;
Glutathione
;
Microbial Sensitivity Tests
2.Near-infrared excited graphene oxide/silver nitrate/chitosan coating for improving antibacterial properties of titanium implants.
Yifan WANG ; Yingde XU ; Xuefeng ZHANG ; Jingyu LIU ; Jintong HAN ; Shengli ZHU ; Yanqin LIANG ; Shuilin WU ; Zhenduo CUI ; Weijia LÜ ; Zhaoyang LI
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(8):937-944
OBJECTIVE:
To design and construct a graphene oxide (GO)/silver nitrate (Ag3PO4)/chitosan (CS) composite coating for rapidly killing bacteria and preventing postoperative infection in implant surgery.
METHODS:
GO/Ag3PO4 composites were prepared by ion exchange method, and CS and GO/Ag3PO4 composites were deposited on medical titanium (Ti) sheets successively. The morphology, physical image, photothermal and photocatalytic ability, antibacterial ability, and adhesion to the matrix of the materials were characterized.
RESULTS:
The GO/Ag3PO4 composites were successfully prepared by ion exchange method and the heterogeneous structure of GO/Ag3PO4 was proved by morphology phase test. The heterogeneous structure formed by Ag3PO4 and GO reduced the band gap from 1.79 eV to 1.39 eV which could be excited by 808 nm near-infrared light. The photothermal and photocatalytic experiments proved that the GO/Ag3PO4/CS coating had excellent photothermal and photodynamic properties. In vitro antibacterial experiments showed that the antibacterial rate of the GO/Ag3PO4/CS composite coating against Staphylococcus aureus reached 99.81% after 20 minutes irradiation with 808 nm near-infrared light. At the same time, the composite coating had excellent light stability, which could provide stable and sustained antibacterial effect.
CONCLUSION
GO/Ag3PO4/CS coating can be excited by 808 nm near infrared light to produce reactive oxygen species, which has excellent antibacterial activity under light.
Chitosan
;
Silver Nitrate
;
Titanium
;
Anti-Bacterial Agents/pharmacology*
;
Coloring Agents
3.Baicalin, silver titanate, Bletilla striata polysaccharide and carboxymethyl chitosan in a porous sponge dressing for burn wound healing.
Yan-Rong GONG ; Cheng ZHANG ; Xing XIANG ; Zhi-Bo WANG ; Yu-Qing WANG ; Yong-Hua SU ; Hui-Qing ZHANG
Journal of Integrative Medicine 2023;21(5):487-495
OBJECTIVE:
This study tests the efficacy of Bletilla striata polysaccharide (BSP), carboxymethyl chitosan (CMC), baicalin (BA) and silver titanate (ST) in a wound dressings to fight infection, promote healing and provide superior biocompatibility.
METHODS:
The antibacterial activity of BA and ST was evaluated in vitro using the inhibition zone method. BA/ST/BSP/CMC porous sponge dressings were prepared and characterized. The biocompatibility of BA/ST/BSP/CMC was assessed using the cell counting kit-8 assay. The therapeutic effect of BA/ST/BSP/CMC was further investigated using the dorsal skin burn model in Sprague-Dawley rats.
RESULTS:
The wound dressing had good antibacterial activity against Escherichia coli and Staphylococcus aureus through BA and ST, while the combination of BSP and CMC played an important role in promoting wound healing. The BA/ST/BSP/CMC porous sponge dressings were prepared using a freeze-drying method with the concentrations of BA and ST at 20 and 0.83 mg/mL, respectively, and the optimal ratio of 5% BSP to 4% CMC was 1:3. The average porosity, water absorption and air permeability of BA/ST/BSP/CMC porous sponge dressings were measured to be 90.43%, 746.1% and 66.60%, respectively. After treatment for 3 and 7 days, the healing rates of the BA/ST/BSP/CMC group and BA/BSP/CMC group were significantly higher than those of the normal saline (NS) group and silver sulfadiazine (SSD) group (P < 0.05). Interleukin-1β expression in the BA/ST/BSP/CMC group at 1 and 3 days was significantly lower than that in the other three groups (P < 0.05). After being treated for 3 days, vascular endothelial growth factor expression in the BA/BSP/CMC group and BA/ST/BSP/CMC group was significantly higher than that in the NS group and SSD group (P < 0.05). Inspection of histological sections showed that the BA/ST/BSP/CMC group and BA/BSP/CMC group began to develop scabbing and peeling of damaged skin after 3 days of treatment, indicating accelerated healing relative to the NS group and SSD group.
CONCLUSION
The optimized concentration of BA/ST/BSP/CMC dressing was as follows: 6 mg BSP, 14.4 mg CMC, 0.5 mg ST and 12 mg BA. The BA/ST/BSP/CMC dressing, containing antibacterial constituents, was non-cytotoxic and effective in accelerating the healing of burn wounds, making it a promising candidate for wound healing. Please cite this article as: Gong YR, Zhang C, Xiang X, Wang ZB, Wang YQ, Su YH, Zhang HQ. Baicalin, silver titanate, Bletilla striata polysaccharide and carboxymethyl chitosan in a porous sponge dressing for burn wound healing. J Integr Med. 2023; 21(5): 487-495.
Rats
;
Animals
;
Chitosan/pharmacology*
;
Silver/pharmacology*
;
Porosity
;
Vascular Endothelial Growth Factor A/pharmacology*
;
Rats, Sprague-Dawley
;
Wound Healing
;
Polysaccharides/pharmacology*
;
Bandages
;
Burns/drug therapy*
;
Anti-Bacterial Agents/pharmacology*
;
Silver Sulfadiazine/pharmacology*
4.Effects of three-dimensional bioprinting antibacterial hydrogel on full-thickness skin defect wounds in rats.
Rong Hua JIN ; Zhen Zhen ZHANG ; Peng Qin XU ; Si Zhan XIA ; Ting Ting WENG ; Zhi Kang ZHU ; Xin Gang WANG ; Chuan Gang YOU ; Chun Mao HAN
Chinese Journal of Burns 2023;39(2):165-174
Objective: To explore the effects of three-dimensional (3D) bioprinting gelatin methacrylamide (GelMA) hydrogel loaded with nano silver on full-thickness skin defect wounds in rats. Methods: The experimental research method was adopted. The morphology, particle diameter, and distribution of silver nanoparticles in nano silver solution with different mass concentrations and the pore structure of silver-containing GelMA hydrogel with different final mass fractions of GelMA were observed by scanning electron microscope and the pore size was calculated. On treatment day 1, 3, 7, and 14, the concentration of nano silver released from the hydrogel containing GelMA with final mass fraction of 15% and nano silver with final mass concentration of 10 mg/L was detected by mass spectrometer. At 24 h of culture, the diameters of inhibition zone of GelMA hydrogel containing final mass concentration of 0 (no nano silver), 25, 50, and 100 mg/L nano silver against Staphylococcus aureus and Escherichia coli were detected. Fibroblasts (Fbs) and adipose stem cells (ASCs) were isolated respectively by enzymatic digestion using the discarded prepuce after circumcision from a 5-year-old healthy boy who was treated in the Department of Urology of the Second Affiliated Hospital of Zhejiang University School of Medicine in July 2020, and the discarded fat tissue after liposuction from a 23-year-old healthy woman who was treated in the Department of Plastic Surgery of the Hospital in July 2020. The Fbs were divided into blank control group (culture medium only), 2 mg/L nano sliver group, 5 mg/L nano sliver group, 10 mg/L nano sliver group, 25 mg/L nano sliver group, and 50 mg/L nano sliver group, which were added with the corresponding final mass concentrations of nano sliver solution, respectively. At 48 h of culture, the Fb proliferation viability was detected by cell counting kit 8 method. The Fbs were divided into 0 mg/L silver-containing GelMA hydrogel group, 10 mg/L silver-containing GelMA hydrogel group, 50 mg/L silver-containing GelMA hydrogel group, and 100 mg/L silver-containing GelMA hydrogel group and then were correspondingly treated. On culture day 1, 3, and 7, the Fb proliferation viability was detected as before. The ASCs were mixed into GelMA hydrogel and divided into 3D bioprinting group and non-printing group. On culture day 1, 3, and 7, the ASC proliferation viability was detected as before and cell growth was observed by live/dead cell fluorescence staining. The sample numbers in the above experiments were all 3. Four full-thickness skin defect wounds were produced on the back of 18 male Sprague-Dawley rats aged 4 to 6 weeks. The wounds were divided into hydrogel alone group, hydrogel/nano sliver group, hydrogel scaffold/nano sliver group, and hydrogel scaffold/nano sliver/ASC group, and transplanted with the corresponding scaffolds, respectively. On post injury day (PID) 4, 7, 14, and 21, the wound healing was observed and the wound healing rate was calculated (n=6). On PID 7 and 14, histopathological changes of wounds were observed by hematoxylin eosin staining (n=6). On PID 21, collagen deposition of wounds was observed by Masson staining (n=3). Data were statistically analyzed with one-way analysis of variance, analysis of variance for repeated measurement, Bonferroni correction, and independent sample t test. Results: The sliver nano particles in nano silver solution with different mass concentrations were all round, in scattered distribution and uniform in size. The silver-containing GelMA hydrogels with different final mass fractions of GelMA all showed pore structures of different sizes and interconnections. The pore size of silver-containing GelMA hydrogel with 10% final mass fraction was significantly larger than that of silver-containing GelMA hydrogels with 15% and 20% final mass fractions (with P values both below 0.05). On treatment day 1, 3, and 7, the concentration of nano silver released from silver-containing GelMA hydrogel in vitro showed a relatively flat trend. On treatment day 14, the concentration of released nano silver in vitro increased rapidly. At 24 h of culture, the diameters of inhibition zone of GelMA hydrogel containing 0, 25, 50, and 100 mg/L nano silver against Staphylococcus aureus and Escherichia coli were 0, 0, 0.7, and 2.1 mm and 0, 1.4, 3.2, and 3.3 mm, respectively. At 48 h of culture, the proliferation activity of Fbs in 2 mg/L nano silver group and 5 mg/L nano silver group was both significantly higher than that in blank control group (P<0.05), and the proliferation activity of Fbs in 10 mg/L nano silver group, 25 mg/L nano silver group, and 50 mg/L nano silver group was all significantly lower than that in blank control group (P<0.05). Compared with the that of Fbs in 0 mg/L silver-containing GelMA hydrogel group, the proliferation activity of Fbs in 50 mg/L silver-containing GelMA hydrogel group and 100 mg/L silver-containing GelMA hydrogel group was all significantly decreased on culture day 1 (P<0.05); the proliferation activity of Fbs in 50 mg/L silver-containing GelMA hydrogel group was significantly increased (P<0.05), while the proliferation activity of Fbs in 100 mg/L silver-containing GelMA hydrogel group was significantly decreased on culture day 3 (P<0.05); the proliferation activity of Fbs in 100 mg/L silver-containing GelMA hydrogel group was significantly decreased on culture day 7 (P<0.05). The proliferation activity of ASCs in 3D bioprinting group show no statistically significant differences to that in non-printing group on culture day 1 (P>0.05). The proliferation activity of ASCs in 3D bioprinting group was significantly higher than that in non-printing group on culture day 3 and 7 (with t values of 21.50 and 12.95, respectively, P<0.05). On culture day 1, the number of dead ASCs in 3D bioprinting group was slightly more than that in non-printing group. On culture day 3 and 5, the majority of ASCs in 3D bioprinting group and non-printing group were living cells. On PID 4, the wounds of rats in hydrogel alone group and hydrogel/nano sliver group had more exudation, and the wounds of rats in hydrogel scaffold/nano sliver group and hydrogel scaffold/nano sliver/ASC group were dry without obvious signs of infection. On PID 7, there was still a small amount of exudation on the wounds of rats in hydrogel alone group and hydrogel/nano sliver group, while the wounds of rats in hydrogel scaffold/nano sliver group and hydrogel scaffold/nano sliver/ASC group were dry and scabbed. On PID 14, the hydrogels on the wound surface of rats in the four groups all fell off. On PID 21, a small area of wounds remained unhealed in hydrogel alone group. On PID 4 and 7, the wound healing rates of rats in hydrogel scaffold/nano sliver/ASC group were significantly higher than those of the other three groups (P<0.05). On PID 14, the wound healing rate of rats in hydrogel scaffold/nano sliver/ASC group was significantly higher than the wound healing rates in hydrogel alone group and hydrogel/nano sliver group (all P<0.05). On PID 21, the wound healing rate of rats in hydrogel alone group was significantly lower than that in hydrogel scaffold/nano sliver/ASC group (P<0.05). On PID 7, the hydrogels on the wound surface of rats in the four groups remained in place; on PID 14, the hydrogel in hydrogel alone group was separated from the wounds of rats, while some hydrogels still existed in the new tissue of the wounds of rats in the other three groups. On PID 21, the collagen arrangement in the wounds of rats in hydrogel alone group was out of order, while the collagen arrangement in the wounds of rats in hydrogel/nano sliver group, and hydrogel scaffold/nano sliver/ASC group was relatively orderly. Conclusions: Silver-containing GelMA hydrogel has good biocompatibility and antibacterial properties. Its three-dimensional bioprinted double-layer structure can better integrate with new formed tissue in the full-thickness skin defect wounds in rats and promote wound healing.
Male
;
Rats
;
Animals
;
Humans
;
Hydrogels/pharmacology*
;
Bioprinting
;
Metal Nanoparticles
;
Rats, Sprague-Dawley
;
Silver/pharmacology*
;
Soft Tissue Injuries
;
Anti-Bacterial Agents
5.Study on Characterization and Content Determination Method of Silver in Chitosan Antibacterial Gel.
Jun PENG ; Shuhan WANG ; Wenliang LIU ; Haoqi KE ; Xiaofeng GAO
Chinese Journal of Medical Instrumentation 2022;46(5):560-564
OBJECTIVE:
To characterize the silver in chitosan antibacterial gel, and to establish a method for the determination of silver content in samples.
METHODS:
The silver in the samples was analysed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Microwave digestion was adopted to digest the chitosan antibacterial gel, and then the content of silver was determined by flame atomic absorption spectrometry.
RESULTS:
The analysises showed that the particle size of silver in chitosan antibacterial gel was about 150~ 200 nm. The silver showed good linearity in the concentration range of 25~250 μg/L (y=0.000 35x+0.001 7, r=0.999 9). The recovery rate (n=9) was 98.5%.
CONCLUSIONS
SEM, EDS and SP-ICP-MS can be used for the characterization of silver particles in chitosan antibacterial gel. Microwave digestion-flame atomic absorption spectrophotometry method is simple, practicable, high precision and high quantitative accuracy, which is suitable for the quantitative analysis of silver in chitosan antibacterial gel.
Anti-Bacterial Agents/pharmacology*
;
Chitosan/chemistry*
;
Microwaves
;
Particle Size
;
Silver
6.Optimization for the preparation process of silver nanoparticles and their biological activity.
Junna ZOU ; Wenhuan LUO ; Shan WANG ; Yan WANG
Journal of Central South University(Medical Sciences) 2022;47(10):1398-1407
OBJECTIVES:
Recently, the use of biological synthesis of metal nanoparticles has attracted widespread attention. Researchers are trying to find a biological method to synthesize silver nanoparticles with little environmental pollution and easy preparation, and to explore the impact of preparation conditions on the synthesis of silver nanoparticles. This study aims to explore the biological synthesis of silver nanoparticles (AgNPs) with controllable size and good effect and to compare their biological activity with that of AgNPs prepared by chemical method.
METHODS:
In this study, AgNPs were prepared by biological method with water extract of Tricholomagambosum (WET) and cell-free supernatant of Lactobacillus crispatus (CFS) as reducing agent and protective agent, and silver nitrate solution as precursor. Meanwhile, AgNPs was synthesized by sodium citrate chemical method. The effects of temperature, pH, dosage of extraction solution and light conditions on the biosynthesis of WET-AgNPs and CFS-AgNPs were investigated, and their characteristic of the synthesized WET-AgNPs and CFS-AgNPs were analyzed. Finally, the antibacterial effect, toxicity and selectivity of the 3 different AgNPs were compared.
RESULTS:
AgNPs were synthesized successfully by the 3 methods with various characteristics. The AgNPs prepared by biological method (WET-AgNPs , CFS-AgNPs) were greatly affected by pH and temperature. The WET-AgNPs and CFS-AgNPs prepared by the biological methods had better antibacterial effect than the AgNPs by the chemical method (all P<0.01). Between them, the WET-AgNPs had a slightly higher antibacterial effect than the CFS-AgNPs. Compared with the AgNPs prepared by chemical method, the toxicity of the WET-AgNPs and CFS-AgNPs to normal cells was lower (both P<0.01), and the cell selectivity of the CFS-AgNPs was better when the concentration was 480 μg/mL.
CONCLUSIONS
AgNPs with biological activity can be synthesized from WET and CFS, which have different biological activity compared with the AgNPs prepared by biological method.
Humans
;
Metal Nanoparticles
;
Fatigue Syndrome, Chronic
;
Silver/pharmacology*
;
Anti-Bacterial Agents/pharmacology*
;
Plant Extracts/pharmacology*
7.Effects and mechanism of water-soluble chitosan hydrogel on infected full-thickness skin defect wounds in diabetic mice.
Meng ZHU ; Yu Zhou CHEN ; Jin Zhao OU ; Zhao LI ; Sha HUANG ; Xiao Hua HU ; Xiao Yan JU ; Ye TIAN ; Zhongwei NIU
Chinese Journal of Burns 2022;38(10):923-931
Objective: To explore the effects and mechanism of water-soluble chitosan hydrogel on infected full-thickness skin defect wounds in diabetic mice. Methods: The experimental research method was adopted. The control hydrogel composed of polyvinyl alcohol and gelatin, and the water-soluble chitosan hydrogel composed of the aforementioned two materials and water-soluble chitosan were prepared by the cyclic freeze-thaw method. The fluidity of the two dressings in test tube before and after the first freeze-thawing was generally observed, and the difference in appearance of the final state of two dressings in 12-well plates were compared. According to random number table (the same grouping method below), the cell strains of L929 and HaCaT were both divided into water-soluble chitosan hydrogel group and control hydrogel group, respectively. After adding corresponding dressings and culturing for 24 h, the cell proliferation activity was measured using cell counting kit 8. Rabbit blood erythrocyte suspensions were divided into normal saline group, polyethylene glycol octyl phenyl ether (Triton X-100) group, water-soluble chitosan hydrogel group, and control hydrogel group, which were treated accordingly and incubated for 1 hour, and then the hemolysis degree of erythrocyte was detected by a microplate reader. Twenty-four female db/db mice aged 11-14 weeks were selected, and full-thickness skin defect wounds on their backs were inflicted and inoculated with the methicillin-resistant Staphylococcus aureus (MRSA), 72 h later, the mice were divided into blank control group, sulfadiazine silver hydrogel group, control hydrogel group, and water-soluble chitosan hydrogel group, which were treated accordingly. On post injury day (PID) 0 (immediately), 7, 14, and 21, the healing of the wound was observed. On PID 14 and 21, the wound healing rate was calculated. On PID 14, MRSA concentration in wounds was determined. On PID 21, the wounds were histologically analyzed by hematoxylin and eosin staining; the expression of CD31 in the wounds was detected by immunofluorescence method, and its positive percentage was calculated. Raw264.7 cells were taken and divided into interleukin-4 (IL-4) group, blank control group, control hydrogel group, and water-soluble chitosan hydrogel group, which were treated accordingly. At 48 h of culture, the percentages of CD206 positive cells were detected by flow cytometry. The number of samples was all 3. Data were statistically analyzed with independent sample t test, one-way analysis of variance, analysis of variance for repeated measurement, least significant difference test, and Dunnett T3 test. Results: Two dressings in test tube had certain fluidity before freeze-thawing and formed semi-solid gels after freeze-thawing for once. The final forms of two dressings in 12-well plates were basically stable and translucent sheets, with little difference in transparency. At 24 h of culture, the cell proliferation activities of L929 and HaCaT in water-soluble chitosan hydrogel group were significantly higher than those in control hydrogel group (with t values of 6.37 and 7.50, respectively, P<0.01). At 1 h of incubation, the hemolysis degree of erythrocyte in water-soluble chitosan hydrogel group was significantly lower than that in Triton X-100 group (P<0.01), but similar to that in normal saline group and control hydrogel group (P>0.05). On PID 0, the traumatic conditions of mice in the 4 groups were similar. On PID 7, more yellowish exudates were observed inside the wound in blank control group and control hydrogel group, while a small amount of exudates were observed in the wound in sulfadiazine silver hydrogel group and water-soluble chitosan hydrogel group. On PID 14, the wounds in blank control group and control hydrogel group were dry and crusted without obvious epithelial coverage; in sulfadiazine silver hydrogel group, the scabs fell off and purulent exudate was visible on the wound; in water-soluble chitosan hydrogel group, the base of wound was light red and obvious epithelial coverage could be observed on the wound. On PID 14, the wound healing rate in water-soluble chitosan hydrogel group was significantly higher than that in the other 3 groups (all P<0.01). On PID 21, the wound in water-soluble chitosan hydrogel group was completely closed, while the wounds in the other 3 groups were not completely healed; the wound healing rate in water-soluble chitosan hydrogel group was significantly higher than that in the other 3 groups (all P<0.01). On PID 14, the concentration of MRSA in the wound in water-soluble chitosan hydrogel group was significantly lower than that in blank control group (P<0.01), but similar to that in control hydrogel group and sulfadiazine silver hydrogel group (P>0.05). On PID 21, the new epidermis was severely damaged in blank control group; the epidermis on the wound in control hydrogel group also had a large area of defect; complete new epidermis had not yet being formed on the wound in sulfadiazine silver hydrogel group; the wound in water-soluble chitosan hydrogel group was not only completely covered by the new epidermis, the basal cells of the new epidermis were also regularly aligned. On PID 21, the percentage of CD31 positivity in the wound in water-soluble chitosan hydrogel group was (2.19±0.35)%, which was significantly higher than (0.18±0.05)% in blank control group, (0.23±0.06)% in control hydrogel group, and (0.62±0.25)% in sulfadiazine silver hydrogel group, all P<0.01. At 48 h of culture, the percentage of CD206 positive Raw264.7 cells in water-soluble chitosan hydrogel group was lower than that in IL-4 group (P>0.01) but significantly higher than that in blank control group and control hydrogel group (P<0.05 or P<0.01). Conclusions: The water-soluble chitosan hydrogel has good biosafety and can induce higher level of macrophage M2 polarization than control hydrogel without water-soluble chitosan, so it can enhance the repair effect of MRSA-infected full-thickness skin defect wounds in diabetic mice and promote rapid wound healing.
Mice
;
Female
;
Animals
;
Rabbits
;
Interleukin-4
;
Hydrogels/pharmacology*
;
Wound Healing
;
Chitosan/pharmacology*
;
Diabetes Mellitus, Experimental
;
Water
;
Methicillin-Resistant Staphylococcus aureus
;
Gelatin
;
Polyvinyl Alcohol
;
Hemolysis
;
Saline Solution
;
Eosine Yellowish-(YS)
;
Hematoxylin
;
Octoxynol
;
Silver
;
Phenyl Ethers
;
Sulfadiazine
8.A Noval Method for Producing Antibacterial Wound Dressing by Using Fused Deposition Molding with Post-3D-printed Process.
Chinese Journal of Medical Instrumentation 2019;43(4):275-278
Using three-dimensional printing to produce antibacterial wound dressing is a new topic that will change the production style of wound dressing industry. Combining with post-3D-printed process, a desktop fused deposition molding equipment can be used to produce wound dressing containing polyvinyl alcohol, alginate and chitosan. The wound dressing produced by FDM has good aspects of absorbency, moisture vapour transmission rate and mechanical property. After loaded with antibacterial agent iodine and silver nano particle, the antibacterial activity rate increases to 99% and it is suitable to use as antibacterial wound dressing. This method affects the production of wound dressing to a more cost-effective way, and provides a possible individualized treatment for patient in the future.
Alginates
;
chemistry
;
Anti-Bacterial Agents
;
administration & dosage
;
Bacteria
;
drug effects
;
Bandages
;
economics
;
standards
;
Chitosan
;
chemistry
;
Humans
;
Iodine
;
administration & dosage
;
pharmacology
;
Nanoparticles
;
administration & dosage
;
Polyvinyl Alcohol
;
chemistry
;
Printing, Three-Dimensional
;
Silver
;
administration & dosage
;
pharmacology
;
Wound Healing
9.Sub-cytotoxic concentrations of ionic silver promote the proliferation of human keratinocytes by inducing the production of reactive oxygen species.
Xiaodong DUAN ; Daizhi PENG ; Yilan ZHANG ; Yalan HUANG ; Xiao LIU ; Ruifu LI ; Xin ZHOU ; Jing LIU
Frontiers of Medicine 2018;12(3):289-300
Silver-containing preparations are widely used in the management of skin wounds, but the effects of silver ions on skin wound healing remain poorly understood. This study investigated the effects of silver ions (Ag) on the proliferation of human skin keratinocytes (HaCaT) and the production of intracellular reactive oxygen species (ROS). After treating HaCaT cells with Ag and/or the active oxygen scavenger N-acetyl cysteine (NAC), cell proliferation and intracellular ROS generation were assessed using CCK-8 reagent and DCFH-DA fluorescent probe, respectively. In addition, 5-bromo-2-deoxyUridine (BrdU) incorporation assays, cell cycle flow cytometry, and proliferating cell nuclear antigen (PCNA) immunocytochemistry were conducted to further evaluate the effects of sub-cytotoxic Ag concentrations on HaCaT cells. The proliferation of HaCaT cells was promoted in the presence of 10 and 10 mol/L Ag at 24, 48, and 72 h. Intracellular ROS generation also significantly increased for 5-60 min after exposure to Ag. The number of BrdU-positive cells and the presence of PCNA in HaCaT cells increased 48 h after the addition of 10 and 10 mol/L Ag, with 10 mol/L Ag markedly increasing the cell proliferation index. These effects of sub-cytotoxic Ag concentrations were repressed by 5 mmol/L NAC. Our results suggest that sub-cytotoxic Ag concentrations promote the proliferation of human keratinocytes and might be associated with a moderate increase in intracellular ROS levels. This study provides important experimental evidence for developing novel silver-based wound agents or dressings with few or no cytotoxicity.
Apoptosis
;
drug effects
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Fluorescent Antibody Technique
;
Humans
;
Keratinocytes
;
cytology
;
drug effects
;
Proliferating Cell Nuclear Antigen
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Silver
;
pharmacology
10.Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line.
Shahnaz MAJEED ; Mohd Syafiq Bin ABDULLAH ; Gouri Kumar DASH ; Mohammed Tahir ANSARI ; Anima NANDA
Chinese Journal of Natural Medicines (English Ed.) 2016;14(8):615-620
Biosynthesis of silver and other metallic nanoparticles is one of the emerging research area in the field of science and technology due to their potentiality, especially in the field of nano-biotechnology and biomedical sciences in order to develop nanomedicine. In our present study, Penicillium decumbens (MTCC-2494) was brought from Institute of Microbial Technology (IMTECH) Chandigarh and employed for extracellular biological synthesis of silver nanoparticles. Ag-NPs formation was appeared with a dark brown color inside the conical flask. Characterization of Ag-NPs were done by UV-Spectrophotometric analysis which showed absorption peak at 430 nm determines the presence of nanoparticles, Fourier transform infrared (FT-IR) spectroscopic analysis, showed amines and amides are the possible proteins involved in the stabilization of nanoparticles as capping agent. Atomic force Microscopy (AFM) confirmed the particle are spherical, size was around 30 to 60 nm and also the roughness of nanoparticles. Field emission scanning electron microscopy (FE-SEM) showed the topology of the nanoparticles and were spherical in shape. The biosynthesis process was found fast, ecofriendly and cost effective. Nano-silver particle was found to have a broad antimicrobial activity and also it showed good enhancement of antimicrobial activity of Carbenicillin, Piperacillin, Cefixime, Amoxicillin, Ofloxacin and Sparfloxacin in a synergistic mode. These Ag-NPs showed good anti-cancer activity at 80 μg·mL(-1)upon 24 hours of incubation and toxicity increases upon 48 hours of incubation against A-549 human lung cancer cell line and the synergistic formulation of the antibiotic with the synthesized nanoparticles was found more effective against the pathogenic bacteria studied.
Anti-Bacterial Agents
;
metabolism
;
pharmacology
;
Antineoplastic Agents
;
metabolism
;
pharmacology
;
Bacteria
;
drug effects
;
Cell Line, Tumor
;
Humans
;
Lung Neoplasms
;
drug therapy
;
Metal Nanoparticles
;
chemistry
;
Microbial Sensitivity Tests
;
Penicillium
;
metabolism
;
Silver
;
metabolism
;
pharmacology

Result Analysis
Print
Save
E-mail