1.Ionizing Radiation-Induced RPL23a Reduction Regulates Apoptosis
Yu Xuan HE ; Yi Xiao GUO ; Yong ZHANG ; Jun Jie HU ; Wei Tao DONG ; Xiang Hong DU ; Xing Xu ZHAO
Biomedical and Environmental Sciences 2021;34(10):789-802
Objective:
The expression patterns of ribosomal large subunit protein 23a (RPL23a) in mouse testes and GC-1 cells were analyzed to investigate the potential relationship between RPL23a expression and spermatogonia apoptosis upon exposure to X-ray.
Methods:
Male mice and GC-1 cells were irradiated with X-ray, terminal dUTP nick end-labelling (TUNEL) was performed to detect apoptotic spermatogonia
Results:
Ionizing radiation (IR) increased spermatogonia apoptosis, the expression of RPL11, MDM2 and p53, and decreased RPL23a expression in mice spermatogonia
Conclusion
These results suggested that IR reduced RPL23a expression, leading to weakened the RPL23a-RPL11 interactions, which may have activated p53, resulting in spermatogonia apoptosis. These results provide insights into environmental and clinical risks of radiotherapy following exposure to IR in male fertility. The graphical abstract was available in the web of www.besjournal.com.
Animals
;
Apoptosis/genetics*
;
Gene Expression Regulation
;
Male
;
Mice
;
Ribosomal Proteins/metabolism*
;
Signal Transduction
;
Spermatogonia/radiation effects*
2.Low-intensity pulsed ultrasound stimulates proliferation of stem/progenitor cells: what we need to know to translate basic science research into clinical applications.
Yan TAN ; Yang GUO ; Amanda B REED-MALDONADO ; Zheng LI ; Guiting LIN ; Shu-Jie XIA ; Tom F LUE
Asian Journal of Andrology 2021;23(6):602-610
Low-intensity pulsed ultrasound (LIPUS) is a promising therapy that has been increasingly explored in basic research and clinical applications. LIPUS is an appealing therapeutic option as it is a noninvasive treatment that has many advantages, including no risk of infection or tissue damage and no known adverse reactions. LIPUS has been shown to have many benefits including promotion of tissue healing, angiogenesis, and tissue regeneration; inhibition of inflammation and pain relief; and stimulation of cell proliferation and differentiation. The biophysical mechanisms of LIPUS remain unclear and the studies are ongoing. In recent years, more and more research has focused on the relationship between LIPUS and stem/progenitor cells. A comprehensive search of the PubMed and Embase databases to July 2020 was performed. LIPUS has many effects on stem cells. Studies show that LIPUS can stimulate stem cells in vitro; promote stem cell proliferation, differentiation, and migration; maintain stem cell activity; alleviate the problems of insufficient seed cell source, differentiation, and maturation; and circumvent the low efficiency of stem cell transplantation. The mechanisms involved in the effects of LIPUS are not fully understood, but the effects demonstrated in studies thus far have been favorable. Much additional research is needed before LIPUS can progress from basic science research to large-scale clinical dissemination and application.
Cell Proliferation
;
Humans
;
Signal Transduction
;
Stem Cells/radiation effects*
;
Ultrasonic Therapy/methods*
;
Ultrasonic Waves
3.Effect of low-frequency pulsed electromagnetic fields on activity of rat calvarial osteoblasts through IGF-1R/NO signaling pathway.
Jiale SHAO ; Zhizhong LI ; Jian ZHOU ; Kai LI ; Rong QIN ; Keming CHEN
Journal of Zhejiang University. Medical sciences 2019;48(2):158-164
OBJECTIVE:
To investigate the effect of low-frequency pulsed electromagnetic fields (PEMF) on the maturation and mineralization of rat cranial osteoblasts and its relation to IGF-1R/NO signaling pathway.
METHODS:
The rat osteoblasts were isolated and cultured and randomly divided into blank control group, PEMF group, GSK group (IGF-1R blocker) and PEMF+GSK group. The cells were treated with 50 Hz 0.6 mT PEMF for 1.5 h/d. After 3 d of PEMF treatment, the expressions of protein kinase (AKT), inducible nitric oxide synthase (iNOS) and cGMP-dependent protein kinase (PKG) were detected by Western blotting; on 6 d of PEMF treatment alkaline phosphatase (ALP) activity was determined; on 12 d of PEMF treatment the calcification nodule formation was demonstrated by Alizarin red staining.
RESULTS:
NO level was significantly increased in rat osteoblasts treated with 50 Hz 0.6 mT PEMF for 1.5 h/d. Western blot analysis showed that the expressions of AKT, iNOS and PKG protein in PEMF group were higher than those in the control group (all <0.01); the ALP activity was increased(<0.05), and the PEMF group had the largest area of Alizarin red staining (<0.01). The expressions of AKT, iNOS and PKG protein in GSK group were lower than those in the control group; the ALP activity was decreased (<0.05), and the GSK group had the least area of Alizarin red staining (<0.01). The expressions of AKT, iNOS, PKG protein, the ALP activity and the area of Alizarin red staining in PEMF+GSK group were between PEMF group and GSK group.
CONCLUSIONS
PEMF may enhance the maturation and mineralization of rat cranial osteoblasts through IGF-1R/NO signaling pathway.
Animals
;
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
;
Electromagnetic Fields
;
Nitric Oxide
;
metabolism
;
Osteoblasts
;
radiation effects
;
Rats
;
Receptor, IGF Type 1
;
metabolism
;
Signal Transduction
;
radiation effects
4.Activation of the JAK/STAT signal pathway may be involved in DNA damage of A549 cells induced by X-ray.
Li-Qiao PENG ; Cheng-Hao LI ; Bing MAO
Acta Physiologica Sinica 2019;71(5):698-704
The aim of this study was to investigate the relationship between the effects of different doses of X-rays on DNA damage and JAK/STAT signaling pathway activation in A549 cells. The A549 cells were radiated with X-rays at doses of 2, 4, and 8 Gy. The proliferation of A549 cells was detected by CCK8 method. The content of interleukin 6 (IL-6) in culture medium at different time points after irradiation was detected by enzyme-linked immunoassay, and the expression levels of IL-6 receptor (IL-6R) and p53 binding protein 1 (53BP1) were detected by immunofluorescent staining. The expression levels of JAK2, p-JAK2, STAT3 and p-STAT3 were detected by Western blot. The results showed that, compared with the control group, X-ray irradiation reduced the cellular proliferation, up-regulated the expression of 53BP1, increased the IL-6 content in the medium supernatant, and up-regulated the protein expression levels of IL-6R, JAK2, p-JAK2, STAT3, and p-STAT3. The above effects of X-ray irradiation were dose-dependent. These results suggest that the mechanism by which X-rays cause DNA damage in A549 cells may involve activation of the JAK/STAT signaling pathway.
A549 Cells
;
DNA Damage
;
radiation effects
;
Humans
;
Janus Kinase 2
;
metabolism
;
Receptors, Interleukin-6
;
metabolism
;
STAT3 Transcription Factor
;
metabolism
;
Signal Transduction
;
Tumor Suppressor p53-Binding Protein 1
;
metabolism
;
X-Rays
5.Microwave-induced Apoptosis and Cytotoxicity of NK Cells through ERK1/2 Signaling.
Li ZHAO ; Jing LI ; Yan Hui HAO ; Ya Bing GAO ; Shui Ming WANG ; Jing ZHANG ; Ji DONG ; Hong Mei ZHOU ; Shu Chen LIU ; Rui Yun PENG
Biomedical and Environmental Sciences 2017;30(5):323-332
OBJECTIVETo investigate microwave-induced morphological and functional injury of natural killer (NK) cells and uncover their mechanisms.
METHODSNK-92 cells were exposed to 10, 30, and 50 mW/cm2 microwaves for 5 min. Ultrastructural changes, cellular apoptosis and cell cycle regulation were detected at 1 h and 24 h after exposure. Cytotoxic activity was assayed at 1 h after exposure, while perforin and NKG2D expression were detected at 1 h, 6 h, and 12 h after exposure. To clarify the mechanisms, phosphorylated ERK (p-ERK) was detected at 1 h after exposure. Moreover, microwave-induced cellular apoptosis and cell cycle regulation were analyzed after blockade of ERK signaling by using U0126.
RESULTSMicrowave-induced morphological and ultrastructural injury, dose-dependent apoptosis (P < 0.001) and cell cycle arrest (P < 0.001) were detected at 1 h after microwave exposure. Moreover, significant apoptosis was still detected at 24 h after 50 mW/cm2 microwave exposure (P < 0.01). In the 30 mW/cm2 microwave exposure model, microwaves impaired the cytotoxic activity of NK-92 cells at 1 h and down regulated perforin protein both at 1 h and 6 h after exposure (P < 0.05). Furthermore, p-ERK was down regulated at 1 h after exposure (P < 0.05), while ERK blockade significantly promoted microwave-induced apoptosis (P < 0.05) and downregulation of perforin (P < 0.01).
CONCLUSIONMicrowave dose-dependently induced morphological and functional injury in NK-92 cells, possibly through ERK-mediated regulation of apoptosis and perforin expression.
Apoptosis ; radiation effects ; Cell Cycle ; radiation effects ; Cell Line ; Dose-Response Relationship, Radiation ; Down-Regulation ; Humans ; Killer Cells, Natural ; radiation effects ; MAP Kinase Signaling System ; Microwaves ; adverse effects ; NK Cell Lectin-Like Receptor Subfamily K ; genetics ; metabolism ; Signal Transduction
6.Tetrahydrobiopterin Protects against Radiation-induced Growth Inhibition in H9c2 Cardiomyocytes.
Zheng-Yi ZHANG ; Yi LI ; Rui LI ; An-An ZHANG ; Bo SHANG ; Jing YU ; Xiao-Dong XIE
Chinese Medical Journal 2016;129(22):2733-2740
BACKGROUNDTetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthases (NOSs) for the synthesis of nitric oxide (NO). BH4 therapy can reverse the disease-related redox disequilibrium observed with BH4 deficiency. However, whether BH4 exerts a protective effect against radiation-induced damage to cardiomyocytes remains unknown.
METHODSClonogenic assays were performed to determine the effects of X-ray on H9c2 cells with or without BH4 treatment. The contents of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA) in H9c2 cells were measured to investigate oxidative stress levels. The cell cycle undergoing radiation with or without BH4 treatment was detected using flow cytometry. The expression levels of proteins in the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/P53 signaling pathway, inducible NOS (iNOS), and endothelial NOS (eNOS) were examined using Western blotting.
RESULTSX-ray radiation significantly inhibited the growth of H9c2 cells in a dose-dependent manner, whereas BH4 treatment significantly reduced the X-ray radiation-induced growth inhibition (control group vs. X-ray groups, respectively, P< 0.01). X-ray radiation induced LDH release, apoptosis, and G0/G1 peak accumulation, significantly increasing the level of MDA and the production of NO, and decreased the level of SOD (control group vs. X-ray groups, respectively, P < 0.05 or P < 0.01). By contrast, BH4 treatment can significantly reverse these processes (BH4 treatment groups vs. X-ray groups, P < 0.05 or P < 0.01). BH4 reversed the X-ray radiation-induced expression alterations of apoptosis-related molecules, including B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein, and caspase-3, and molecules of the PI3K/Akt/P53 signaling pathway. BH4 enhanced the production of NO in 2 Gy and 4 Gy radiated groups by upregulating eNOS protein expression and downregulating iNOS protein expression.
CONCLUSIONSBH4 treatment can protect against X-ray-induced cardiomyocyte injury, possibly by recoupling eNOS rather than iNOS. BH4 treatment also decreased oxidative stress in radiated H9c2 cells.
Animals ; Antioxidants ; metabolism ; Apoptosis ; drug effects ; Biopterin ; analogs & derivatives ; pharmacology ; Cell Cycle ; drug effects ; Cell Line ; Enzyme-Linked Immunosorbent Assay ; L-Lactate Dehydrogenase ; metabolism ; Myocytes, Cardiac ; cytology ; drug effects ; radiation effects ; Rats ; Signal Transduction
7.Caffeine Suppresses Apoptosis of Bladder Cancer RT4 Cells in Response to Ionizing Radiation by Inhibiting Ataxia Telangiectasia Mutated-Chk2-p53 Axis.
Zhe-Wei ZHANG ; Jing XIAO ; Wei LUO ; Bo-Han WANG ; Ji-Min CHEN
Chinese Medical Journal 2015;128(21):2938-2945
BACKGROUNDCaffeine suppresses ataxia telangiectasia and Rad3 related and ataxia telangiectasia mutated (ATM) activities; ATM is the major kinase for DNA damage detection. This study aimed to investigate the effects of caffeine on DNA damage responses in cells from the bladder cancer cell line RT4 those were exposed to ionizing radiation (IR).
METHODSImmunofluorescent staining was performed to investigate changes in the proteins involved in DNA damage responses with or without caffeine. A mouse xenograft model was used to study the effects of caffeine on the DNA damage responses. Western blotting was used to investigate the effects of caffeine pretreatment on the ATM-Chk2-p53-Puma axis, while real-time polymerase chain reaction (RT-PCR) assessed changes in messenger RNA levels of p53 and downstream targets responding to IR. Finally, terminal deoxynucleotidyl transferase-dUTP nick end labeling assay. Western blotting and colony formation assay were used to measure the effects of caffeine on radiation-related apoptosis. All of the data were analyzed with a two-tailed Student's t-test.
RESULTSImmunofluorescent staining showed that caffeine pretreatment profoundly suppressed the formation of γH2AXand p53-binding protein 1 foci in RT4 cells in response to irradiation. Cellular and animal experiments suggested that this suppression was mediated by suppression of the ATM-Chk2-p53-Puma DNA damage-signaling axis. RT-PCR indicated caffeine also attenuated transactivation of p53 and p53-inducible genes. The colony formation assay revealed that caffeine displayed radioprotective effects on RT4 cells in response to low-dose radiation compared to the radiosensitization effects on T24 cells.
CONCLUSIONCaffeine may inhibit IR-related apoptosis of bladder cancer RT4 cells by suppressing activation of the ATM-Chk2-p53-Puma axis.
Animals ; Apoptosis ; drug effects ; radiation effects ; Caffeine ; pharmacology ; Cell Cycle Proteins ; metabolism ; Cell Line, Tumor ; Checkpoint Kinase 2 ; metabolism ; Humans ; Immunohistochemistry ; Male ; Mice ; Mice, Nude ; Radiation, Ionizing ; Real-Time Polymerase Chain Reaction ; Signal Transduction ; drug effects ; Tumor Suppressor Protein p53 ; metabolism ; Urinary Bladder Neoplasms ; radiotherapy
8.Microwave exposure impairs synaptic plasticity in the rat hippocampus and PC12 cells through over-activation of the NMDA receptor signaling pathway.
Lu XIONG ; Cheng Feng SUN ; Jing ZHANG ; Ya Bing GAO ; Li Feng WANG ; Hong Yan ZUO ; Shui Ming WANG ; Hong Mei ZHOU ; Xin Ping XU ; Ji DONG ; Bin Wei YAO ; Li ZHAO ; Rui Yun PENG
Biomedical and Environmental Sciences 2015;28(1):13-24
OBJECTIVEThe aim of this study is to investigate whether microwave exposure would affect the N-methyl-D-aspartate receptor (NMDAR) signaling pathway to establish whether this plays a role in synaptic plasticity impairment.
METHODS48 male Wistar rats were exposed to 30 mW/cm2 microwave for 10 min every other day for three times. Hippocampal structure was observed through H&E staining and transmission electron microscope. PC12 cells were exposed to 30 mW/cm2 microwave for 5 min and the synapse morphology was visualized with scanning electron microscope and atomic force microscope. The release of amino acid neurotransmitters and calcium influx were detected. The expressions of several key NMDAR signaling molecules were evaluated.
RESULTSMicrowave exposure caused injury in rat hippocampal structure and PC12 cells, especially the structure and quantity of synapses. The ratio of glutamic acid and gamma-aminobutyric acid neurotransmitters was increased and the intracellular calcium level was elevated in PC12 cells. A significant change in NMDAR subunits (NR1, NR2A, and NR2B) and related signaling molecules (Ca2+/calmodulin-dependent kinase II gamma and phosphorylated cAMP-response element binding protein) were examined.
CONCLUSION30 mW/cm2 microwave exposure resulted in alterations of synaptic structure, amino acid neurotransmitter release and calcium influx. NMDAR signaling molecules were closely associated with impaired synaptic plasticity.
Animals ; Gene Expression Regulation ; radiation effects ; Hippocampus ; cytology ; Microwaves ; Neuronal Plasticity ; radiation effects ; Neurons ; radiation effects ; Neurotransmitter Agents ; metabolism ; PC12 Cells ; Rats ; Receptors, N-Methyl-D-Aspartate ; genetics ; metabolism ; Signal Transduction ; physiology ; radiation effects ; Time Factors
9.Role of PLC-PIP2 and cAMP-PKA signal pathways in radiation-induced immune-suppressing effect.
Juan Cong DONG ; Guang Hui CHENG ; Yu Xing SHAN ; Ning WU ; Ming Long SHAO ; Peng Wu LI ; Shun Zi JIN
Biomedical and Environmental Sciences 2014;27(1):27-34
OBJECTIVEThe purpose of the present study was to observe the changes in CD4+CD25+Nrp1+Treg cells after irradiation with different doses and explore the possible molecular mechanisms involved.
METHODSICR mice and mouse lymphoma cell line (EL-4 cells) was used. The expressions of CD4, CD25, Nrp1, calcineurin and PKC-α were detected by flow cytometry. The expressions of TGF-β1, IL-10, PKA and cAMP were estimated with ELISA.
RESULTSAt 12 h after irradiation, the expression of Nrp1 increased significantly in 4.0 Gy group, compared with sham-irradiation group (P<0.05) in the spleen and thymus, respectively, when ICR mice received whole-body irradiation (WBI). Meanwhile the synthesis of Interleukin 10 (IL-10) and transforming growth factor-β1 (TGF-β1) increased significantly after high dose irradiation (HDR) (> or = 1.0 Gy). In addition, the expression of cAMP and PKA protein increased, while PKC-α, calcineurin decreased at 12h in thymus cells after 4.0 Gy X-irradiation. While TGF-β1 was clearly inhibited when the PLC-PIP2 signal pathway was stimulated or the cAMP-PKA signal pathway was blocked after 4.0 Gy X-irradiation, this did not limit the up-regulation of CD4+CD25+Nrp1+Treg cells after ionizing radiation.
CONCLUSIONThese results indicated that HDR might induce CD4+CD25+Nrp1+Treg cells production and stimulate TGF-β1 secretion by regulating signal molecules in mice.
Animals ; Calcineurin ; genetics ; metabolism ; Cyclic AMP ; metabolism ; Dose-Response Relationship, Radiation ; Female ; Gene Expression Regulation ; radiation effects ; Immunosuppression ; Interleukin-10 ; genetics ; metabolism ; Lymphocyte Subsets ; physiology ; Male ; Mice ; Neuropilin-1 ; genetics ; metabolism ; Phosphoinositide Phospholipase C ; genetics ; metabolism ; Protein Kinases ; genetics ; metabolism ; Signal Transduction ; Transforming Growth Factor beta ; genetics ; metabolism ; Whole-Body Irradiation ; adverse effects
10.Black rice anthocyanidins prevent retinal photochemical damage via involvement of the AP-1/NF-kappaB/Caspase-1 pathway in Sprague-Dawley Rats.
Hao JIA ; Wei CHEN ; Xiaoping YU ; Xiuhua WU ; Shuai LI ; Hong LIU ; Jiru LIAO ; Weihua LIU ; Mantian MI ; Longjian LIU ; Daomei CHENG
Journal of Veterinary Science 2013;14(3):345-353
The effects of black rice anthocyanidins (BRACs) on retinal damage induced by photochemical stress are not well known. In the present study, Sprague-Dawley rats were fed AIN-93M for 1 week, after which 80 rats were randomly divided into two groups and treated with (n = 40) or without BRACs (n = 40) for 15 days, respectively. After treatment, both groups were exposed to fluorescent light (3,000 +/- 200 lux; 25degrees C), and the protective effect of dietary BRACs were evaluated afterwards. Our results showed that dietary BRACs effectively prevented retinal photochemical damage and inhibited the retinal cells apoptosis induced by fluorescent light (p < 0.05). Moreover, dietary BRACs inhibited expression of AP-1 (c-fos/c-jun subunits), up-regulated NF-kappaB (p65) expression and phosphorylation of IkappaB-alpha, and decreased Caspase-1 expression (p < 0.05). These results suggest that BRACs improve retinal damage produced by photochemical stress in rats via AP-1/NF-kappaB/Caspase-1 apoptotic mechanisms.
Animal Feed/analysis
;
Animals
;
Anthocyanins/administration & dosage/*pharmacology
;
Antioxidants/administration & dosage/*physiology
;
Blotting, Western
;
Caspase 1/*genetics/metabolism
;
Diet
;
Dietary Supplements/analysis
;
I-kappa B Proteins/genetics/metabolism
;
NF-kappa B/*genetics/metabolism
;
Neoplasm Proteins/genetics/metabolism
;
Nucleocytoplasmic Transport Proteins/genetics/metabolism
;
Oryza sativa/chemistry
;
Proto-Oncogene Proteins c-fos/genetics/metabolism
;
Proto-Oncogene Proteins c-jun/genetics/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Retinal Diseases/etiology/*prevention & control
;
Signal Transduction/*drug effects/radiation effects
;
Transcription Factor AP-1/*genetics/metabolism

Result Analysis
Print
Save
E-mail