1.RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification.
Xiaochen WANG ; Rongsong LING ; Yurong PENG ; Weiqiong QIU ; Demeng CHEN
International Journal of Oral Science 2024;16(1):6-6
Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.
Humans
;
DNA-Binding Proteins
;
Head and Neck Neoplasms/genetics*
;
N-Terminal Acetyltransferases
;
RNA, Transfer
;
Serine
;
Signal Transduction
;
Squamous Cell Carcinoma of Head and Neck
2.Effect of electroacupuncture on liver Akt/FoxO1 signaling pathway in rats with diabetic fatty.
Ying DONG ; Rui LI ; Wei-Xing GUO ; Fang-Fang MO ; Shan-Shan SONG ; Hao-Ru DUAN ; Shu-Ting ZHUANG ; Meng-Wei GUO
Chinese Acupuncture & Moxibustion 2023;43(6):679-683
OBJECTIVE:
To observe the effect of electroacupuncture (EA) on liver protein kinase B (Akt)/forkhead box transcription factor 1 (FoxO1) signaling pathway in Zucker diabetic fatty (ZDF) rats, and to explore the possible mechanism of EA on improving liver insulin resistance of type 2 diabetes mellitus.
METHODS:
Twelve male 2-month-old ZDF rats were fed with high-fat diet for 4 weeks to establish diabetes model. After modeling, the rats were randomly divided into a model group and an EA group, with 6 rats in each group. In addition, six male Zucker lean (ZL) rats were used as the blank group. The rats in the EA group were treated with EA at bilateral "Zusanli" (ST 36), "Sanyinjiao" (SP 6), "Weiwanxiashu" (EX-B 3), and "Pishu" (BL 20). The ipsilateral "Zusanli" (ST 36) and "Weiwanxiashu" (EX-B 3) were connected to EA device, continuous wave, frequency of 15 Hz, 20 min each time, once a day, six times a week, for a total of 4 weeks. The fasting blood glucose (FBG) in each group was compared before modeling, before intervention and after intervention; the serum levels of insulin (INS) and C-peptide were measured by radioimmunoassay method, and the insulin resistance index (HOMA-IR) was calculated; HE staining method was used to observe the liver tissue morphology; Western blot method was used to detect the protein expression of Akt, FoxO1 and phosphoenolpyruvate carboxykinase (PEPCK) in the liver.
RESULTS:
Before intervention, compared with the blank group, FBG was increased in the model group and the EA group (P<0.01); after intervention, compared with the model group, FBG in the EA group was decreased (P<0.01). Compared with the blank group, the serum levels of INS and C-peptide, HOMA-IR, and the protein expression of hepatic FoxO1 and PEPCK were increased (P<0.01), while the protein expression of hepatic Akt was decreased (P<0.01) in the model group. Compared with the model group, the serum levels of INS and C-peptide, HOMA-IR, and the protein expression of hepatic FoxO1 and PEPCK were decreased (P<0.01), while the protein expression of hepatic Akt was increased (P<0.01) in the EA group. In the model group, the hepatocytes were structurally disordered and randomly arranged, with a large number of lipid vacuoles in the cytoplasm. In the EA group, the morphology of hepatocytes tended to be normal and lipid vacuoles were decreased.
CONCLUSION
EA could reduce FBG and HOMA-IR in ZDF rats, improve liver insulin resistance, which may be related to regulating Akt/FoxO1 signaling pathway.
Male
;
Animals
;
Rats
;
Rats, Zucker
;
Proto-Oncogene Proteins c-akt/genetics*
;
Diabetes Mellitus, Type 2/therapy*
;
Insulin Resistance
;
C-Peptide
;
Electroacupuncture
;
Liver
;
Signal Transduction
;
Insulin
;
Lipids
3.Effect mechanism of acupuncture for anti-asthmatic airway remodeling based on TGF-β1 / Smad3 signaling pathway.
Qian ZHANG ; Yun QIAO ; Yi-Rong SHI ; Ji-Li PANG ; Shi-Jun SONG ; Hong-Yuan TANG ; Le-Ming QIN ; Guo-Yuan ZENG
Chinese Acupuncture & Moxibustion 2023;43(6):684-690
OBJECTIVE:
To observe the effect of acupuncture at "Feishu" (BL 13) + "Dingchuan" (EX-B 1) and "Kongzui" (LU 6) + "Yuji" (LU 10) for the airway remodeling in asthma rats based on the transforming growth factor-β1 (TGF-β1)/ Smad family member 3 (Smad3) signaling pathway; and explore the efficacy difference between the two acupoint combinations.
METHODS:
Forty SPF male SD rats, aged 4 weeks, were randomly divided into a blank group (n = 10) and a modeling group (n = 30). The ovalbumin (OVA) sensitization method was used to establish asthma model in the modeling group. After successful model preparation, the rats of the modeling group were randomized into a model group, an acupuncture at "Feishu" (BL 13) + "Dingchuan" (EX-B 1) (AAF) group, and acupuncture at "Kongzui" (LU 6)+"Yuji" (LU 10) (AAK) group, with 10 rats in each one. Starting from day 15 of the experiment, 5 min after motivating, acupuncture was applied to "Feishu" (BL 13) + "Dingchuan" (EX-B 1) and "Kongzui" (LU 6)+"Yuji" (LU 10) in the AAF group and the AAK group respectively. The intervention was delivered for 30 min each time, once daily, lasting 3 weeks consecutively. Using lung function detector, the airway resistance (RL) and dynamic compliance (Cdyn) of the lungs were detected. The histomorphology of lung tissues was detected with HE staining and Masson staining, and the mRNA and protein expression of TGF-β1 and Smad3 in lung tissues was detected with the real-time PCR and Western blot methods.
RESULTS:
Compared with the blank group, RL was increased and Cdyn was decreased in the rats of the model group (P<0.01); and RL was reduced and Cdyn was increased in the AAF group and the AAK group when compared with those in the model group (P<0.01, P<0.05). The rats of the model group had bronchial lumen stenosis, inflammatory cell infiltration, collagen fibre hyperplasia and thickened smooth muscle in the lung tissues when compared with those in the blank group; and in comparison with the model group, all of the above morphological changes were attenuated in the AAF group and the AAK group. Besides, these morphological changes of the lung tissues were more alleviated in the AAF group when compared with those in the AAK group. In comparison with the blank group, the mRNA and protein expression of TGF-β1 and Smad3 of the lung tissues was increased in the model group (P<0.01), and it was reduced in the AAF group and the AAK group when compared with that in the model group (P<0.05, P<0.01). The mRNA expression of TGF-β1 and Smad3 was lower in the AAF group when compared with that in the AAK group (P<0.05).
CONCLUSION
Acupuncture at either "Feishu" (BL 13)+"Dingchuan" (EX-B 1) or "Kongzui" (LU 6)+"Yuji" (LU 10) reduces the airway remodeling in the rats with asthma, which may be related to the down-regulation of mRNA and protein expression of TGF-β1 and Smad3. The better efficacy is obtained with acupuncture at "Feishu" (BL 13)+"Dingchuan" (EX-B 1).
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Transforming Growth Factor beta1/genetics*
;
Airway Remodeling
;
Acupuncture Therapy
;
Signal Transduction
;
Asthma/therapy*
;
Constriction, Pathologic
;
Anti-Asthmatic Agents
4.The triggering receptor expressed on myeloid cells 2-apolipoprotein E signaling pathway in diseases.
Shukai LYU ; Zhuoqing LAN ; Caixia LI
Chinese Medical Journal 2023;136(11):1291-1299
Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane receptor on myeloid cells and plays an important role in the body's immune defense. Recently, TREM2 has received extensive attention from researchers, and its activity has been found in Alzheimer's disease, neuroinflammation, and traumatic brain injury. The appearance of TREM2 is usually accompanied by changes in apolipoprotein E (ApoE), and there has been a lot of research into their structure, as well as the interaction mode and signal pathways involved in them. As two molecules with broad and important roles in the human body, understanding their correlation may provide therapeutic targets for certain diseases. In this article, we reviewed several diseases in which TREM2 and ApoE are synergistically involved in the development. We further discussed the positive or negative effects of the TREM2-ApoE pathway on nervous system immunity and inflammation.
Humans
;
Alzheimer Disease/metabolism*
;
Apolipoproteins E/genetics*
;
Microglia/metabolism*
;
Myeloid Cells/metabolism*
;
Signal Transduction
;
Neuroinflammatory Diseases
5.Effect of REG3A on proliferation and invasion of glioma cells by regulating PI3K/Akt signaling pathway.
Yan Chun QUAN ; Li Ying WANG ; Zeng Yong WANG ; Wei GAO ; Feng Yuan CHE
Chinese Journal of Oncology 2023;45(8):642-650
Objective: To investigate the effects of regenerating islet-derived protein 3A (REG3A) on the proliferation and invasion of glioma cells and its molecular mechanism. Methods: Five low-grade, five high-grade glioma tissues and ten adjacent tissues from glioma patients who underwent surgery at Linyi People's Hospital from October 17, 2017 to October 18, 2018 were collected. Human glioma cell lines (SF295, U251, TG905, A172, CRT) and a primary glioma cell line PT-1 were cultured in vitro. The protein and mRNA expressions of REG3A in these tissues and glioma cell lines were detected by Western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). SF295 cells were infected with lentivirus and labeled as REG3A plasmid transfection group, and the TG905 cells were transfected with si-REG3A by liposome transfection reagent and labeled as si-REG3A transfection group. At the same time, the empty transfection control and blank control groups were set up. Glioma cells were treated with REG3A recombinant protein alone or in combination with Akt1/2 inhibitors. Cell counting kit-8 (CCK-8) and cell scratch assay were used to detect cell proliferation and invasion, respectively. Western blot was used to detect the protein expression of N-cadherin, vimentin and phosphorylation of Akt (p-Akt) in REG3A overexpressed and knockdown glioma cells. Results: RT-qPCR results showed that the mRNA expression levels of REG3A in glioma cells in each group were U251 (2.129±0.13), TG905 (2.22±0.59), CRT (5.02±0.31), A172 (6.62±1.34) and PT-1 (9.18±0.61), respectively, higher than its expression in SF295 cells (1.00±0.18, P<0.001). The mRNA expression level of REG3A in high-grade glioma tissue samples (3.18±2.92) was higher than that in the control group (1.00±1.14, P=0.031) and low-grade glioma group (0.90±0.67, P=0.014). The results of western blot and immunohistochemical staining were consistent with that of RT-qPCR. The migration rate of cells in si-REG3A transfection group [(60.57±5.30)%] was lower than that of the empty transfection group [(84.18±13.63)% (P=0.038)] and blank control group [(79.65±12.09)% (P=0.076)]. The results of the scratch experiment showed that the migration rate of cells in REG3A plasmid transfected cells in the SF295 group was (96.05±6.41)%, which was significantly higher than that of empty transfected cells [(74.47±8.23)%, P=0.021)]. REG3A recombinant protein could up-regulate the expression of N-cadherin, vimentin and p-Akt in SF295 cells. Compared with the control group [(100.00±2.53)%], the proliferation rate in the REG3A recombinant protein group [(117.70±10.24)%] was significantly up-regulated, and the proliferation rate in the REG3A recombinant protein+ Akt inhibitor group [(98.31±3.64)%] was significantly lower than that of the REG3A recombinant protein group (P=0.017). The migration rate of the REG3A recombinant protein+ Akt inhibitor group was (63.35±4.06)%, which was significantly lower than (89.26±11.07)% of the REG3A recombinant protein group (P=0.019). Conclusion: REG3A can promote the proliferation and invasion of human glioma cells by activating the PI3K/Akt signaling pathway.
Humans
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Glioma/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Protein Kinase Inhibitors
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction
;
Vimentin/metabolism*
6.Panax notoginseng saponins improve monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting ADAM10/Notch3 signaling pathway.
Sai ZHANG ; Yun-Na TIAN ; Zheng-Yang SONG ; Xiao-Ting WANG ; Xin-Yu WANG ; Jun-Peng XU ; Lin-Bo YUAN ; Wan-Tie WANG
Acta Physiologica Sinica 2023;75(4):503-511
In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.
Animals
;
Male
;
Rats
;
Caspase 3/metabolism*
;
Collagen
;
Disease Models, Animal
;
Hypertension, Pulmonary/drug therapy*
;
Monocrotaline/adverse effects*
;
Panax notoginseng/chemistry*
;
Proliferating Cell Nuclear Antigen/pharmacology*
;
Pulmonary Arterial Hypertension
;
Pulmonary Artery/metabolism*
;
Rats, Sprague-Dawley
;
Receptor, Notch3/genetics*
;
RNA, Messenger
;
Saline Solution
;
Signal Transduction
;
Saponins/pharmacology*
7.The I226R protein of African swine fever virus inhibits the cGAS-STING-mediated innate immune response.
Yabo LI ; Huicong LOU ; Yuna ZHAO ; Wenhui FAN ; Pengtao JIAO ; Lei SUN ; Tingrong LUO ; Wenjun LIU
Chinese Journal of Biotechnology 2023;39(12):4796-4808
This study aimed to explore the mechanism of how African swine fever virus (ASFV) I226R protein inhibits the cGAS-STING signaling pathway. We observed that I226R protein (pI226R) significantly inhibited the cGAS-STING-mediated type Ⅰ interferons and the interferon-stimulated genes production by dual-luciferase reporter assay system and real-time quantitative PCR. The results of co-immunoprecipitation assay and confocal microscopy showed that pI226R interacted with cGAS. Furthermore, pI226R promoted cGAS degradation through autophagy-lysosome pathway. Moreover, we found that pI226R decreased the binding of cGAS to E3 ligase tripartite motif protein 56 (TRIM56), resulting in the weakened monoubiquitination of cGAS, thus inhibiting the activation of cGAS and cGAS-STING signaling. In conclusion, ASFV pI226R suppresses the antiviral innate immune response by antagonizing cGAS, which contributes to an in-depth understanding of the immune escape mechanism of ASFV and provides a theoretical basis for the development of vaccines.
Animals
;
Swine
;
African Swine Fever Virus/metabolism*
;
Membrane Proteins/metabolism*
;
Immunity, Innate
;
Nucleotidyltransferases/metabolism*
;
Signal Transduction/genetics*
8.Heixiaoyao Powder interferes with microglia polarization in AD model mice by regulating NOX2/ROS/NF-κB signaling pathway.
Ming-Cheng LI ; Jun ZHOU ; Yun-Yun HU ; Zhi-Peng MENG ; Yu-Jie LYU ; Hu-Ping WANG
China Journal of Chinese Materia Medica 2023;48(15):4027-4038
The effect and mechanism of Heixiaoyao Powder on the polarization of microglia(MG) in APP/PS1 double transgenic mice were explored based on NADPH oxidase 2(NOX2)/reactive oxygen species(ROS)/nuclear factor kappaB(NF-κB) signaling pathway. Fifty 4-month-old male APP/PS1 mice were randomly divided into a model group, an MCC950 group(10 mg·kg~(-1)), and low-, medium-, and high-dose Heixiaoyao Powder groups(6.45, 12.89, and 25.78 g·kg~(-1)). Thirty male C57BL/6J mice of the same age and strain were randomly divided into a blank group, a blank + intragastric intervention group, and a blank + intraperitoneal injection group. Drug intervention lasted 90 days. Morris water maze test was used to detect learning and cognitive ability. Nissl staining and transmission electron microscopy were used to observe the pathological morphology and ultrastructure of hippocampal neurons. Immunofluorescence was used to detect the positive expression of M1-type marker CD16/32~+/Iba-1~+, M2-type marker CD206~+/Iba-1~+ of MG and the expression of hippocampal ROS. The colorimetric method was used to detect the content of malondialdehyde(MDA) and superoxide dismutase(SOD) in the hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory factors, including interleukin-6(IL-6), interleukin-8(IL-8), and tumor necrosis factor-α(TNF-α), in the hippocampus. Western blot was used to detect the protein expression of β-amyloid protein(Aβ), Iba-1, CD16/32, CD206, NOX2, NF-κB, p-NF-κB, NF-κB inhibitor alpha(IκBα), and p-IKBα in the hippocampus. The results showed that as compared with the blank group, the model group showed prolonged target quadrant movement distance and escape latency(P<0.01), shortened target quadrant retention time and percentage(P<0.01), disorganized neuronal cells with swelling, nuclear disappearance or bias, reduced number of cells, dissolved or absent Nissl bodies, and a clear area in the cytoplasm, damaged and shrunk cell membrane with abnormal cell morphology, few organelles in the cytoplasm, reduced and swollen mitochondria, increased MG M1-type marker CD16/32~+/Iba-1~+(P<0.01), decreased M2-type marker CD206~+/Iba-1~+(P<0.01), increased ROS activity and MDA content(P<0.01), decreased SOD level(P<0.01), elevated inflammatory factors IL-6, IL-8, and TNF-α(P<0.01), up-regulated protein expression and phosphorylation of Aβ, CD16/32, Iba-1, NOX2, NF-κB, and IKBα(P<0.01), and down-regulated CD206(P<0.01). There was no statistically significant difference between the blank group, the blank + intragastric intervention group, and the blank + intraperitoneal injection group. After the intervention of Heixiaoyao Powder, the Heixiaoyao Powder groups showed shortened target quadrant movement distance and escape latency(P<0.01), prolonged target quadrant retention time and percentage(P<0.01), increased and neatly arranged cells with relieved swelling, increased Nissl bodies, regular cell morphology, and intact cell membrane, relieved swelling of mitochondria, slightly expanded endoplasmic reticulum, decreased CD16/32~+/Iba-1~+(P<0.05 or P<0.01), increased CD206~+/Iba-1~+(P<0.01), decreased ROS activity and MDA content(P<0.01), increased SOD level(P<0.01), decreased content of inflammatory factors IL-6, IL-8, and TNF-α(P<0.01), down-regulated protein expression and phosphorylation of Aβ, CD16/32, Iba-1, NOX2, NF-κB, and IKBα(P<0.01), and up-regulated CD206(P<0.01). In conclusion, Heixiaoyao Powder can alleviate neuronal damage and improve the learning and memory abilities of APP/PS1 mice. The mechanism of action may be related to the inhibition of NOX2/ROS/NF-κB signaling pathway, regulating the polarization of MG, increasing the expression of M2 type, inhibiting the expression of M1 type, and reducing the release of inflammatory factor.
Mice
;
Male
;
Animals
;
NF-kappa B/genetics*
;
Microglia
;
Reactive Oxygen Species
;
Interleukin-8
;
Powders
;
Tumor Necrosis Factor-alpha
;
Interleukin-6
;
Mice, Inbred C57BL
;
Signal Transduction
;
Mice, Transgenic
;
Superoxide Dismutase
9.Matrine inhibits inflammatory response induced by TNF-α in human umbilical vein endothelial cells through miR-25-3p-mediated Klf4 pathway.
Zi-Ping XIANG ; Yan-Jie LI ; Huan MA ; Xing WANG ; Hui-Xin ZHANG ; Chao WANG
China Journal of Chinese Materia Medica 2023;48(17):4731-4737
This study aimed to analyze the effect of matrine on tumor necrosis factor-α(TNF-α)-induced inflammatory response in human umbilical vein endothelial cells(HUVECs) and explore whether the underlying mechanism was related to the miR-25-3p-mediated Krüppel-like factor 4(Klf4) pathway. The HUVEC cell inflammation model was induced by TNF-α stimulation. After 24 or 48 hours of incubation with different concentrations of matrine(0.625, 1.25, and 2.5 mmol·L~(-1)), CCK-8 assay was used to detect cell proliferation. After treatment with 2.5 mmol·L~(-1) matrine for 48 h, the expression of TNF-α, interleukin-6(IL-6), interleukin-1β(IL-1β), and Klf4 mRNA and miR-25-3p was detected by real-time fluorescence-based quantitative PCR, and the protein expression of TNF-α, IL-6, IL-1β, and Klf4 was detected by Western blot. The anti-miR-25-3p was transfected into HUVECs, and the effect of anti-miR-25-3p on TNF-α-induced cell proliferation and inflammatory factors was detected by the above method. The cells were further transfected with miR-25-3p and incubated with matrine to detect the changes in proliferation and expression of related inflammatory factors, miR-25-3p, and Klf4. The targeting relationship between miR-25-3p and Klf4 was verified by bioinformatics analysis and dual luciferase reporter gene assay. The results displayed that matrine could inhibit TNF-α-induced HUVEC proliferation, decrease the mRNA and protein expression of TNF-α, IL-6, and IL-1β, increase the mRNA and protein expression of Klf4, and reduce the expression of miR-25-3p. Bioinformatics analysis showed that there were specific complementary binding sites between miR-25-3p and Klf4 sequences. Dual luciferase reporter gene assay confirmed that miR-25-3p negatively regulated Klf4 expression in HUVECs by targeting. The inhibition of miR-25-3p expression can reduce TNF-α-induced cell proliferation and mRNA and protein expression of TNF-α, IL-6, and IL-1β. MiR-25-3p overexpression could reverse the effect of matrine on TNF-α-induced cell proliferation and the mRNA and protein expression of TNF-α, IL-6, IL-1β, and Klf4. This study shows that matrine inhibits the inflammatory response induced by TNF-α in HUVECs through miR-25-3p-mediated Klf4 pathway.
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
MicroRNAs/metabolism*
;
Human Umbilical Vein Endothelial Cells
;
Matrines
;
Interleukin-6/genetics*
;
Signal Transduction
;
Antagomirs
;
Inflammation/metabolism*
;
Luciferases/pharmacology*
;
RNA, Messenger
;
Apoptosis
10.Effect of Juanbi Qianggu Formula on biological behaviors of fibroblast-like synoviocytes in rheumatoid arthritis by regulating FGFR1 signaling pathway based on network pharmacology and cell function experiments.
Xiao-Hui MENG ; Sheng ZHONG ; Hai-Hui HAN ; Qi SHI ; Song-Tao SUN ; Lian-Bo XIAO
China Journal of Chinese Materia Medica 2023;48(18):4864-4873
This study aimed to explore the molecular mechanism of Juanbi Qianggu Formula(JBQGF), an empirical formula formulated by the prestigious doctor in traditional Chinese medicine, in the treatment of rheumatoid arthritis based on network pharmacology and cell function experiments. The main active components and targets of JBQGF were obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and Encyclopedia of Traditional Chinese Medicine(ETCM), and the core targets underwent functional enrichment analysis and signaling pathway analysis. Cytoscape 3.6.0 was used to construct a visualized "active component-target-signaling pathway" network of JBQGF. After screening, nine potential pathways of JBQGF were obtained, mainly including G protein-coupled receptor signaling pathway and tyrosine kinase receptor signaling pathway. As previously indicated, the fibroblast growth factor receptor 1(FGFR1) signaling pathway was highly activated in active fibroblast-like synoviocytes(FLS) in rheumatoid arthritis, and cell and animal experiments demonstrated that inhibition of the FGFR1 signaling pathway could significantly reduce joint inflammation and joint destruction in collagen-induced arthritis(CIA) rats. In terms of the tyrosine kinase receptor signal transduction pathway, the analysis of its target genes revealed that FGFR1 might be a potential target of JBQGF for rheumatoid arthritis treatment. The biological effect of JBQGF by inhibiting FGFR1 phosphorylation was preliminarily verified by Western blot, Transwell invasion assay, and pannus erosion assay, thereby inhibiting matrix metalloproteinase 2(MMP2) and receptor activator of nuclear factor-κB ligand(RANKL) and suppressing the invasion of fibroblasts in rheumatoid arthritis and erosive effect of pannus bone. This study provides ideas for searching potential targets of rheumatoid arthritis treatment and TCM drugs through network pharmacology.
Rats
;
Animals
;
Synoviocytes
;
Matrix Metalloproteinase 2/metabolism*
;
Network Pharmacology
;
Receptor, Fibroblast Growth Factor, Type 1/therapeutic use*
;
Arthritis, Rheumatoid/genetics*
;
Signal Transduction
;
Fibroblasts
;
Drugs, Chinese Herbal/therapeutic use*

Result Analysis
Print
Save
E-mail