1.Visual feature extraction combining dissolution testing for the study of drug release behavior of gliclazide modified release tablets
Si-yu CHEN ; Ze-ya LI ; Ping LI ; Xin-qing ZHAO ; Tao GONG ; Li DENG ; Zhi-rong ZHANG
Acta Pharmaceutica Sinica 2025;60(1):225-231
		                        		
		                        			
		                        			 Oral solid dosage forms require processes such as disintegration and dissolution to release the drug before it can be absorbed and utilized by the body. In this manuscript, imaging technology was used to continuously visualize and characterize the 
		                        		
		                        	
2.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
		                        		
		                        			
		                        			Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues. 
		                        		
		                        		
		                        		
		                        	
3.Metabonomic study of blood of mice with high-voltage electrical injury
Si-Yu CHEN ; Hui WANG ; Yan LUO ; Jia-Wen TAO ; Wen-Juan ZHANG ; Yang YUE ; Zheng-Ping YU ; Hui-Feng PI
Journal of Regional Anatomy and Operative Surgery 2024;33(2):100-106
		                        		
		                        			
		                        			Objective To explore the changes of metabonomics in blood of mice after high-voltage electric shock,then screen out the significantly changed differential metabolites and metabolic pathways.Methods The head of C57BL/6J mice was subjected to high-voltage electric shock(electric shock group)or exposed to acoustic and optical stimulation of high-voltage electric(control group),then the whole blood from mice were collected to separate serum.The dual platform combined metabonomic analysis based on gas chromatography-mass spectrometer(GC-MS)and liquid chromatography-mass spectrometer(LC-MS)was performed and orthogonal partial least squares discriminant analysis(OPLS-DA)was used to screen the differential metabolites and related metabolic pathways.Results A total of 415 differential metabolites were screened out in metabonomics in blood of mice after high-voltage electric shock,including 187 up-regulated and 228 down-regulated metabolites.These differentially metabolites were significantly enriched in metabolic pathways including central carbon metabolism in cancer,glucagon signaling pathway,etc.Conclusion By establishing the model of high-voltage electrical injury on experimental mice,this study reveals the significant change of metabolite content and metabolic pathway in blood by high-voltage electrical injury.Which provides a basis for the damage of blood metabolic activity by high-voltage electrical injury,and suggests the potential harm of high-voltage electrical injury to blood metabolic activity in the whole body.
		                        		
		                        		
		                        		
		                        	
4.Separation and determination of chiral and achiral impurities in glimepiride tablets by supercritical fluid chromatography
Han CHEN ; Li-ju YU ; Yan-hua FENG ; Si-li LIU ; Li-li HUANG ; Jian-ping ZHU ; Ming DENG
Acta Pharmaceutica Sinica 2024;59(8):2337-2342
		                        		
		                        			
		                        			 Separation and determination of chiral and achiral impurities in glimepiride tablets by supercritical fluid chromatography. Chiral and achiral impurities were separated on a ACQUITY UPC2 TrefoilTM CEL1 column (150 mm × 3.0 mm, 2.5 μm) maintained at 30 ℃ with the mobile phase containing a mixture of CO2 and methanol-isopropanol (1∶1) at 1 mL·min-1, and the detection wavelength was set at 228 nm. The back pressure was set at 13.8 MPa. The injection volume was 5 μL. In the chromatogram of the system suitability solution, the peaks elute in the following order: impurity Ⅳ, impurity Ⅴ, glimepiride, impurity Ⅲ, impurity Ⅰ and impurity Ⅱ. The six substances were separated successfully in 6 min using the proposed method with a resolution factor of 2.9, 1.6, 3.0, 2.0, 6.4. The impurity Ⅰ-Ⅴ detection limit (S/N = 3) was 0.17, 0.10, 0.06, 0.15, 0.10 μg·mL-1, respectively. Good linear relationship was established between the peak response and the concentration in the range of 0.48-51.30 μg·mL-1 for all impurities. The spiked recovery of impurity Ⅰ-Ⅴ was found to be acceptable for 99.9%, 98.9%, 102.1%, 100.1%, 96.3% (
		                        		
		                        	
5.Targeting mitochondria:a vital therapeutic strategy for ischemic stroke
Li-Yuan MA ; Si-Yin CHEN ; Shao-Ping YIN ; Kai-Pei LUO ; Xian-Li MENG ; Lu YANG
Chinese Pharmacological Bulletin 2024;40(11):2025-2030
		                        		
		                        			
		                        			Ischemic stroke(IS)is a devastating neurological disease commonly around the world.Although modern medicine has recognized the confined mechanisms in the pathological process of cerebral ischemia,it has never been enough for the treatment of IS.Recent studies have confirmed the vital role of mitochondrial dysfunction in neuronal injury after cerebral ische-mia,thereby exerting a potential target for prevention and treat-ment of IS.Herein,we review the main molecular mechanisms of neuronal injury and death by mitochondrial dyshomeostasis under the condition of ischemia/hypoxia,especially mitochon-drial permeability transition pore opening,oxidative stress and apoptotic signaling.Given remodeling of mitochondrial function as a new idea for the management of IS,some emerging strate-gies containing mitochondrial antioxidant,mitophagy regulation and mitochondrial transfer also raise concern in this paper.
		                        		
		                        		
		                        		
		                        	
6.Molecular epidemiology of spotted fever group rickettsiae infections in wild rodents from Fengshan County,Guangxi
Si-Si CHEN ; Fang-Ni WANG ; Ze-Yun XU ; Rui JIAN ; Jing XUE ; Wen-Ping GUO
Chinese Journal of Zoonoses 2024;40(10):989-993
		                        		
		                        			
		                        			The aim of this study was to investigate the prevalence of spotted fever group rickettsia(SFGR)in wild rodents collected from Fengshan County in the Guangxi Zhuang Autonomous Region,and to determine their species.Wild rodents were captured in cages in Fengshan County,Hechi City,Guangxi Zhuang Autonomous Region.The rodents were identified according to morphological characteristics,and the findings were confirmed through molecular biology methods.Subsequently,spleen samples were collected,and DNA was extracted.The outer membrane protein A(ompA)gene was amplified with semi-nested PCR to determine the species of SFGR in captured wild rodents.After sequencing of the PCR products,homology and phylogenetic analyses of ompA gene sequences were performed.A total of 105 wild rodents belonging to seven species were captured.FGR was detected in six rodent species(Bandicota indica,Leopoldamys edwardsi,Mus caroli,Mus Pahari,Rat-tus andamanensis,and Rattus losea,but not Berylmys bower si),and the total positivity rate was 23.8%.Three Rickettsia species,Candidatus Rickettsia jingxinensis,Rickettsia raoultii,and Rickettsia sibirica,were identified from analysis of the ompA gene sequence.This study revealed the presence of three species of SFGR infecting wild rodents from Fengshan County,Guangxi Zhuang Autonomous Region,thus suggesting that Fengshan County is a natural focus of tick-borne spotted fever.This study highlights the need to strengthen monitoring and prevention measures for rickettsiosis.
		                        		
		                        		
		                        		
		                        	
7.Protective Effect of Endogenous ω-3 Polyunsaturated Fatty Acid Against Cisplatin-Induced Myelosuppression
Qi-Hua XU ; Zong-Meng ZHANG ; Chao-Feng XING ; Han-Si CHEN ; Ke-Xin ZHENG ; Yun-Ping MU ; Zi-Jian ZHAO ; Fang-Hong LI
Journal of Experimental Hematology 2024;32(5):1601-1607
		                        		
		                        			
		                        			Objective:To investigate the protective effect of endogenous ω-3 polyunsaturated fatty acid(PUFA)against cisplatin-induced myelosuppression and the mechanism of reducing apoptosis in bone marrow nucleated cells using mfat-1 transgenic mice.Methods:The experimental animals were divided into 4 groups:wild-type mice normal control group,mfat-1 transgenic mice normal control group,wild-type mice model group and mfat-1 transgenic mice model group.The mice in the model group were injected intraperitoneally with 7.5 mg/kg cisplatin on day 0 and day 7 to construct a myelosuppression model,while the mice in the normal control group were injected intraperitoneally with an equal amount of saline,and their status was observed and their body weight was measured daily.Peripheral blood was taken after 14 day for routine blood analysis,and the content and proportion of PUFA in peripheral blood were detected using gas chromatography.Bone marrow nucleated cells in the femur of mice were counted.The histopathological changes in bone marrow were observed by histopathological staining.The apoptosis of nucleated cells and the expression level changes of apoptosis-related genes in the bone marrow of mice were detected by flow cytometry and fluorescence quantitative PCR.Results:Compared with wild-type mice,mfat-1 transgenic mice showed significantly increased levels of ω-3 PUFA in peripheral blood and greater tolerance to cisplatin.Peripheral blood analysis showed that endogenous ω-3 PUFA promoted the recovery of leukocytes,erythrocytes,platelets and haemoglobin in peripheral blood of myelosuppressed mice.The results of HE staining showed that endogenous ω-3 PUFA significantly improved the structural damage of bone marrow tissue induced by cisplatin.Flow cytometry and PCR showed that,compared with wild-type mice model group,the apoptosis rate of bone marrow nucleated cells in mfat-1 transgenic mice was significantly reduced(P<0.001),and the expression of anti-apoptotic genes Bcl-2 mRNA was significantly increased(P<0.01),while the expressions of pro-apoptotic genes Bax and Bak mRNA were significantly reduced(P<0.001,P<0.05).Conclusion:Endogenous ω-3 PUFA can reduce cisplatin-induced apoptosis in bone marrow nucleated cells,increase the number of peripheral blood cells and exert a protective effect against cisplatin-induced myelosuppression by regulating the expression of apoptosis-related genes.
		                        		
		                        		
		                        		
		                        	
8.Design of emergency medical rescue information system based on microservices architecture
Jun-Jun WANG ; Xin ZHANG ; Ke-Yu FANG ; Hai-Long SI ; Xiao-Li QIN ; Ping CHEN
Chinese Medical Equipment Journal 2024;45(10):41-48
		                        		
		                        			
		                        			Objective To design an emergency medical rescue information system to ensure that emergency medical rescue institutions and teams at all levels can quickly access system support under emergency rescue conditions.Methods The emergency medical rescue information system was built with Browser/Server(B/S)architecture,microservices architecture,Java,JavaScript,Spring Boot,Spring Cloud and Alibaba framework,which used MySQL relational database,Redis cache database and Elasticsearch search engine for data storage and management.There were five functional modules involved in the system including the modules for triage,medical treatment,medical technical support,medical evacuation and command and management.Results The system developed behaved well in rapid deployment and response,and realized quick collection of casualty information and enhanced the efficiency and accuracy of casualty triage.Conclusion The system developed can be used in multi rescue scenarios to meet different requirements,which provides information system support for multi emergency medical rescue institutions and teams.[Chinese Medical Equipment Journal,2024,45(10):41-48]
		                        		
		                        		
		                        		
		                        	
9.Mechanism of m6A methyltransferase 3 in the pathogenesis of diabetic cataract
Si CHEN ; Wei YE ; Yun TANG ; Wen-Zhe WANG ; Yi-Rui GE ; Xue-Ying WANG ; Zhen-Ping HUANG
International Eye Science 2023;23(8):1250-1259
		                        		
		                        			
		                        			 AIM: To investigate the role and mechanism of N6-methyladenosine(m6A)methyltransferase 3(METTL3)in the pathogenesis of diabetic cataract.METHODS: We cultured SRA01/04 cells in low and high sugar media for 24h and measured changes in epithelial-mesenchymal transition(EMT)indicators(E-Cadherin, N-Cadherin, ZO-1 and α-SMA)using RT-qPCR and Western blot assays. Cell migration was also assessed using transwell and scratch assays. To investigate the expression level and localization of METTL3 in human lens anterior capsules tissues. Additionally, we used m6A dot blot assay to detect the m6A methylation level of cells cultured in low and high glucose media for 24h, and employed RT-qPCR and Western blot experiments to detect RNA and protein expression of METTL3 in cells. We then treated the cells with METTL3 inhibitor and measured changes in EMT markers by RT-qPCR and Western blot; m6A methylation level was detected by m6A dot blot test; cell migration was detected by Transwell. Finally, the expression of transforming growth factor-β(TGFβ1)in cultured cells was assessed by immunofluorescence staining and the expression levels of TGFβ1 and SNAIL in cells were determined using RT-qPCR and Western blot.RESULTS: Under high glucose conditions, the expression of EMT markers, METTL3, and m6A methylation levels were significantly increased in cells(P<0.05). Furthermore, the migratory ability of cells was higher in high-sugar medium than in low-sugar medium. In human lens anterior capsules, METTL3 expression was higher in patients with diabetic cataract compared to those with age-related cataract. Importantly, treatment with the METTL3 inhibitor STM2457 inhibited EMT in cells, the expression of TGFβ1 and SNAIL, as well as m6A methylation levels in cells(all P<0.05)compared to high-sugar + dimethyl sulfoxide(DMSO)group. Moreover, the migratory capacity of cells was reduced after the addition of STM2457 compared to the high-sugar + DMSO group.CONCLUSION:METTL3 promotes the EMT in human lens epithelial cells under high glucose conditions by activating the TGFβ1/SNAIL pathway, thus contributing to the development of diabetic cataracts. 
		                        		
		                        		
		                        		
		                        	
10.Methyltransferase-like 3-mediated N6-methyladenosine methylation modification regulates the biological activity of vascular endothelial cells via the Notch pathway
Yun TANG ; Si CHEN ; Wei YE ; Wen-Zhe WANG ; Ying GAO ; Yi-Rui GE ; Zhen-Ping HUANG
International Eye Science 2023;23(5):723-730
		                        		
		                        			
		                        			 AIM: To investigate the role and mechanism of methyltransferase-like 3(METTL3)-mediated N6-methyladenosine(m6A)methylation modification in regulating biological activity of vascular endothelial cells in the pathogenesis of choroidal neovascularization.METHODS: Human umbilical vein endothelial cells(HUVEC)cultured in vitro were divided into the following groups: control group(normal culture), low density lipoprotein(LDL)group, fluorescence-labelled LDL(Dil-LDL)group, 12.5μg/mL and 25μg/mL oxidized LDL(ox-LDL)groups, 12.5μg/mL and 25μg/mL fluorescence-labelled ox-LDL(Dil-ox-LDL)groups, DMSO group, STM2457(METTL3 inhibitor)group, DAPT group; and monkey retina-choroidal endothelial cells(RF/6A)cultured in vitro were divided into control group, DMSO group, 12.5 μg/mL ox-LDL group, and DAPT group. Endocytosed lipoprotein level was examined through fluorescence microscopy. RNA m6A methylation level was detected through a dot blot assay. Protein and RNA levels of METTL3 or angiogenesis-related markers were measured through Western blot assays and real-time quantitative polymerase chain reaction(RT-qPCR), respectively. METTL3 expression and localization were investigated through immunofluorescence. Cell migratory and tube formation capacities were assessed through transwell migration and tube formation assays, respectively.RESULTS: Endocytosed lipoprotein levels in HUVECs exposed to Dil-LDL, 12.5μg/mL and 25μg/mL Dil-ox-LDL groups were significantly higher than those in the control group. 12.5μg/mL and 25μg/mL ox-LDL groups significantly increased m6A methylation(all P<0.05), METTL3 protein expression(all P<0.01), and cell migration and angiogenesis capacities(all P<0.01). METTL3 mRNA level was significantly unregulated in the 12.5μg/mL ox-LDL group(P<0.05). In comparison to the DMSO group, the addition of STM2457 caused significant decrease in m6A methylation level(P<0.05), expression of VEGF and other angiogenesis-related markers(all P<0.05), cell migration and angiogenesis capacities(all P<0.01)and the expression of NICD(P<0.05). However, there were no significant differences in METTL3 protein and mRNA levels(all P>0.05). The expression of VEGF and NICD(all P<0.05), as well as the ability of cell migration and angiogenesis of RF/6A, was all significantly decreased in the DAPT group compared to the DMSO group(all P<0.01).CONCLUSION: METTL3-mediated m6A methylation modification promotes angiogenesis in vascular endothelial cells via the Notch signaling pathway in the pathogenesis of choroidal neovascularization. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail