1.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
2.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
3.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
4.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
5.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
6.Application of microchannel technique in minimally invasive resection of cervical intraspinal tumors
Guozhong LIN ; Changcheng MA ; Chao WU ; Yu SI ; Jun YANG
Journal of Peking University(Health Sciences) 2024;56(2):318-321
Objective:To explore the application and key points of microchannel approaches in resec-tion of cervical intraspinal tumors.Methods:A retrospective analysis was performed on 51 cases of cervi-cal spinal canal tumors from February 2017 to March 2020.Among them,5 cases were located epidural space,6 cases were located epidural and subdural space,and 40 cases were located under the subdural extramedullary space(6 cases were located on the ventral side of the spinal cord).The maximum diameter ranged from 0.5 to 3.0 cm.The clinical manifestations included neck,shoulder or upper limb pain 43 cases,sensory disturbance(numbness)in 22 cases,and limb weakness in 8 cases.The micro-channel keyhole technique was used to expose the tumor,and the tumor was resected microscopically.Results:In this study,35 patients underwent hemilaminectomy,12 patients underwent interlaminar fenestration,2 patients underwent medial 1/4 facetectomy on the basis of hemilaminectomy or interlaminar fenestration.Two tumors were resected through anatomy space(no bone was resected).The degree of tumor resection included total resection in 50 cases and subtotal resection in 1 case.The type of the tumor included 36 schwannomas,12 meningiomas,2 enterogenic cysts and 1 dermoid cyst.There was no infec-tion and cerebrospinal fluid leakage postoperatively.Limb numbness occurred in 7 patients.The average follow-up time was 15 months(3 to 36 months).No deformity such as cervical instability or kyphosis was found.The tumor had no recurrence.Conclusion:The cervical spinal canal is relatively wide,cervical tumors with no more than three segments can be fully exposed by means of microchannel technology.Besides intramedullary or malignant tumors,they can be microsurgically removed.Preservation of the skeletal muscle structure of cervical spine is beneficial to recover the anatomy and function of cervical spine.The electrophysiological monitoring helps to avoid spinal cord or nerve root injury.
7.Activation of astrocytes in distal segments of the spinal cord mediating widespread pain induced by peripheral nerve injury
Si-Xuan JIN ; Ning YU ; Feng-Run SUN ; Chao MA
Acta Anatomica Sinica 2024;55(2):167-173
Objective To discuss the relationship between activated glia cells in distal segment of the spinal cord and widespread pain.Methods Fifty female rats were randomly divided into sham group,the chronic constriction injury of the infraorbital nerve(CCI-ION)group,CCI-ION+minocycline(Mino)group,CCI-ION+L-2-aminoadipic acid(LAA)group,and CCI-ION+normal saline(NS)group,n=10 for each group.CCI-ION model was established and Mino,LAA,and normal saline were delivered intrathecally to CCI-ION rats.Immunofluorescence staining was used to detect activated astrocytes and microglia in the medulla oblongata,cervical,thoracic,and lumbar spinal cord segments.On the 7th,14th,21st,28th day,von Frey filaments were used to evaluate the mechanical withdrawal threshold of vibrissa pad,and electronic von Frey tactile pain meter was used to measure the mechanical withdrawal threshold of front paw,chest and hind paw.The radiant thermal stimulator was used to measure the thermal withdrawal threshold of hind paw.Results After intrathecal injection of Mino to inhibit microglia,the activated microglia in each spinal cord segment decreased.Moreover,inhibiting astrocytes by using LAA significantly reduced activated astrocytes in spinal dorsal horn from distal segments.Behavioral assay showed that after intrathecal injection of Mino and LAA,the mechanical allodynia of vibrissa pad in CCI-ION rats was relieved.However,there was no significant difference(P>0.05)in the thermal and mechanical withdrawal thresholds in the hind paw of CCI-ION rats after intrathecal injection of Mino,while intrathecal injection of LAA significantly increased the thermal and mechanical withdrawal thresholds in the hind paw,indicating the relief of widespread pain induced by CCI-ION.Conclusion The activated astrocytes in distal segments of the spinal cord mediated CCI-ION-induced widespread pain.
8.Protective effect and mechanism of Icariin on oxidative stress injury in neurons
Yu-Meng DU ; Si-Min YANG ; Xiao-Tong QIN ; Yan LI ; Rui-Jun JU ; Xiao-Ming PENG ; Xiao-Qiang YAN ; Jie GUAN ; Ling-Yue MA
The Chinese Journal of Clinical Pharmacology 2024;40(13):1869-1873
Objective To explore the protective mechanism of icariin on neuronal oxidative damage,providing a basic pharmacological basis for the treatment of cognitive impairment.Methods Glutamate was used to induce oxidative stress injury in HT22 cells.HT22 cells were divided into control group(normal cultured cells),model group(glutamate injury model)and experimental-L,-M,-H groups(5,10 and 20 μmol·L-1 icariin pretreatment for modeling,respectively).Cell proliferation was detected by cell counting kit-8(CCK-8)method;cytotoxicity was detected by lactate dehydrogenase(LDH)method;reactive oxygen species(ROS)levels were detected by flow cytometry;superoxide dismutase(SOD)levels were detected by biochemical kits;the expression levels of Kelch-like epichlorohydrin-related protein-1(Keap1),nuclear factor E2-related factor 2(Nrf2)were detected by Western blotting;the corresponding mRNA expression was detected by real-time fluorescence quantification polymerose chain reaction.Results The cell viability of control group,model group and experimental-L,-M,-H groups were(100.00±1.31)%,(66.38±2.44)%,(72.07±4.95)%,(82.41±3.57)%and(87.97±4.98)%;LDH release were(0.48±0.52)%,(18.82±2.09)%,(15.32±1.17)%,(10.37±1.39)%and(6.51±0.87)%;ROS level were(14.23±1.13)%,(41.74±1.60)%,(35.69±1.08)%,(33.28±1.69)%and(30.32±2.03)%;SOD levels were(54.84±1.17),(37.95±1.13),(48.02±1.28),(50.56±1.34)and(52.55±1.04)U·mg-1;Keap1 protein levels were 0.36±0.01,0.52±0.03,0.46±0.04,0.39±0.09 and 0.35±0.12;Nrf2 protein levels were 0.29±0.02,0.13±0.08,0.18±0.03,0.21±0.11 and 0.26±0.04;catalase(CAT)mRNA levels were 1.01±0.08,0.81±0.06,0.90±0.04,1.05±0.15 and 1.33±0.26;SOD mRNA levels were 1.09±0.12,0.83±0.03,0.86±0.08,0.94±0.08 and 1.09±0.16.Among the above indicators,the differences between the model group and the control group were statistically significant(all P<0.01);the differences between the experimental-M,-H groups and the model group were statistically significant(P<0.01,P<0.05).Conclusion Icariin may activate the Keap1/Nrf2/antioxidant response element(ARE)signaling pathway,regulate the expression of related proteins,and reduce the level of ROS to effectively alleviate oxidative stress injury in neuronal cells.
9.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.
10.Cloning and interacted protein identification of AP1 homologous gene from Lonicera macranthoides
Ya-xin YU ; Li-jun LONG ; Chang-zhu LI ; Hui-jie ZENG ; Zhong-quan QIAO ; Si-si LIU ; Ying-zi MA
Acta Pharmaceutica Sinica 2024;59(10):2880-2888
The

Result Analysis
Print
Save
E-mail