1.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
2.A new suberin from roots of Ephedra sinica Stapf
Bo-wen ZHANG ; Meng LI ; Xiao-lan WANG ; Ying YANG ; Shi-qi ZHOU ; Si-qi TAO ; Meng YANG ; Deng-hui ZHU ; Ya-tong XU ; Wei-sheng FENG ; Xiao-ke ZHENG
Acta Pharmaceutica Sinica 2024;59(3):661-666
Six compounds were isolated from the roots of
3.Research status of traditional Chinese medicine intervention in mTOR pathway targeting autophagy for prevention and treatment of diabetic nephropathy
Shi-Rui YANG ; Ting-Ting ZHOU ; Chao-Chao MA ; Peng-Fei YANG ; Fan-Qi NIU ; Xue-Yang DU ; Feng-Zhe YAN ; Si-Nong WANG
The Chinese Journal of Clinical Pharmacology 2024;40(11):1675-1678
Diabetic kidney disease(DKD)is one of the most important complications of diabetes.In recent years,domestic and foreign studies have found that mammalian target protein of rapamycin(mTOR)related signaling pathway is a classic pathway involved in the regulation of autophagy,which can achieve the therapeutic effect of DKD by targeting the autophagy pathway,and plays a crucial role in the prevention and treatment of DKD.In this paper,we reviewed the mechanism of mTOR-related signaling pathway targeted autophagy in the prevention and treatment of DKD,in order to provide a new reference and basis for clinical prevention and treatment of DKD.
4.Clinical trial of cipofol combined with afentanil in the treatment of patients undergoing bronchoscopy
Yu-Feng HUI ; Si-Qi TAN ; Ying-Jie SUN
The Chinese Journal of Clinical Pharmacology 2024;40(19):2806-2810
Objective To compare the clinical efficacy and safety of cyclopofol injection and propofol injection combined with afentanil injection in patients undergoing tracheoscopy under laryngeal mask ventilation under general anesthesia.Methods The patients to undergo tracheoscopy were randomly divided into treatment group and control group.Induction of anesthesia:treatment group received 20 μg·kg-1 afentanil,0.4 mg·kg-1 ciprofol and 0.2 mg·kg-1 cisatracurium;control group received 20 μg·kg-1afentanil,2 mg·kg-1 propofol and 0.2 mg·kg-1 cisatracurium.Two groups were given laryngeal mask ventilation for general anesthesia.The treatment group received 0.8 mg·kg-1·h-1 cypofol and 0.5-1.0 μg·kg-1·min-1 afentanil to perform the anesthesia maintenance;the control group was received 8 mg·kg-1·h-1propofol and 0.5-1.0 μg·kg-1·min-1 afentanil to perform the anesthesia maintenance.The vital signs,induction and recovery time,dosage of afentanil during anesthesia and safety were compared between the two groups.Results Treatment group were enrolled 70 cases,10 cases dropped out,and 60 cases were finally included in the statistical analysis.Control group were enrolled 70 cases,10 cases dropped out,and ultimately 60 cases were finally included in the statistical analysis.Three minutes after induction of anesthesia(T1),the mean arterial pressure(MAP)of treatment group and control group were(79.32±5.73)and(73.15±6.20)mmHg,the heart rate(HR)were(70.53±8.20)and(65.77±7.75)beat·min-1,respectively.At insert the bronchoscope(T2),MAP of treatment group and control group were(82.52±5.81)and(75.99±6.09)mmHg,HR were(70.27±7.94)and(65.42±7.73)beat·min-1,respectively.The MAP and HR of treatment group at T1 and T2 were significantly higher than those of control group at the same time,the differences were statistically significant(all P<0.05).The induction time of treatment group and control group was(76.23±6.51)and(66.93±6.26)s,and the difference was statistically significant(P<0.05).The eye opening time during anesthesia recovery of treatment group and control group was(8.42±1.94)and(8.48±2.13)min,the intraoperative dosage of fentanyl was(3 456.67±608.51)and(3 515.00±619.41)μg,respectively,the differences of above indexes in two groups were not statistical significance(all P>0.05).The incidences of injection pain during induction period in treatment group and control group were 3.33%and 30.00%,the incidences of hypotension in treatment group and control group were 18.33%and 40.00%,the incidences of intraoperative bradycardia in treatment group and control group were 3.33%and 13.33%,respectively,the differences were statistically significant(all P<0.05).Conclusion Compared with propofol injection combined with afentanil injection,cipofol injection combined with afentanil injection can better maintain hemodynamic stability during anesthesia induction and maintenance in patients undergoing tracheoscopy under general anesthesia with laryngeal mask ventilation,and has better safety.
5.Salidroside Ameliorates Lung Injury Induced by PM2.5 by Regulating SIRT1-PGC-1α in Mice
Hong Xiao LI ; Mei Yu LIU ; Hui SHAN ; Feng Jin TAN ; Jian ZHOU ; Jin Yuan SONG ; Qi Si LI ; Chen LIU ; Qun Dong XU ; Li YU ; Wei Wan LI
Biomedical and Environmental Sciences 2024;37(4):367-376
Objective This study aimed to clarify the intervention effect of salidroside(SAL)on lung injury caused by PM2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods Specific pathogen-free(SPF)grade male C57BL/6 mice were randomly assigned to the following groups:control group,SAL group,PM2.5 group,SAL+PM2.5 group.On the first day,SAL was given by gavage,and on the second day,PM2.5 suspension was given by intratracheal instillation.The whole experiment consist of a total of 10 cycles,lasting 20 days.At the end of treatment,blood samples and lung tissues were collected and analyzed.Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy.The expression of inflammatory,antioxidants,apoptosis,and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results Exposure to PM2.5 leads to obvious morphological and pathologica changes in the lung of mice.PM2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1,Nrf2,SOD2,SIRT1 and PGC-1ɑ,and an increase in the protein expressions of IL-6,IL-1β,Bax,caspase-9 and cleaved caspase-3.However,SAL reversed the aforementioned changes caused by PM2.5 by activating the SIRT1-PGC-1α pathway. Conclusion SAL can activate SIRT1-PGC-1ɑ to ameliorate PM2.5-induced lung injury.
6.A new furan α -butenolactones from Alisma orientale and their potential antifibrotic activities
Deng-hui ZHU ; Peng-li GUO ; Si-qi TAO ; Jing-ke ZHANG ; Meng-nan ZENG ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(7):2058-2061
Four furan
7.A new iridoid from Eucommia ulmoides
Shi-qi ZHOU ; Zhi-you HAO ; Meng YANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Bo-wen ZHANG ; Si-qi TAO ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(7):2062-2068
Eleven compounds were isolated from
8.Research on robot-based surgical instrument detection and pose estimation algorithm with multi-cascade deep learning processor
Si-Qi HAN ; Min-Kui CHEN ; Li-Pu WEI ; Qian RAN ; Qian XU ; Ming YU ; Yu-Chao SUN ; Feng CHEN
Chinese Medical Equipment Journal 2024;45(6):1-8
Objective To propose a multi-cascade deep learning processor-based surgical instrument detection and pose estimation algorithm to facilitate the robotic scurb nurse to recognize and delivery surgical instruments.Methods The proposed multi-cascade deep leaning processor-based CYSP algorithm was hibernated with several functional modules such as YOLOX with coordinate attention block(CA-YOLOX),segment anything model(SAM)and principal component analysis(PCA).Firstly,CA-YOLOX was applied to identifying the types of the surgical instruments and completing the coarse positioning of x and y coordinates;secondly,the SAM segmenter was used to clarify the positions of the instruments in the RGB image,and the depth information and internal parameters of the camera were introduced to obtain the point cloud of the surgical instruments;finally,the center of mass,principal direction and normal direction of the surgical instrument point cloud were determined through the PCA algorithm,with which the rotation and translation(RT)matrix between the target coordinate system(surgical instrument center of mass coordinate system)and the base coordinate system of the robotic arm was solved,and the matrix was converted into a quaternion and then transmitted to the robotic arm control unit so as to drive the robotic arm to arrive at the corresponding position and pick up the instrument to complete the instrument delivery task.Migration training was accomplished on a self-constructed surgical instrument image dataset and the effectiveness of the proposed algorithm was evaluated,and instrument delivery experiments were performed on a seven-degree-of-freedom robotic arm and the success rate of the algorithm was assessed.Results The multi-cascade deep leaning processor-based CYSP algorithm had a recognition accuracy of 98.52%on the surgical instrument dataset,a success rate of 94%for the in-strument delivery experiment and average time for recognition of 0.28 s.Conclusion The multi-cascade deep leaning proces-sor-based CYSP algorithm with high reliability and practicability behaves well in facilitating the robotic scurb nurse to recog-nize and deliver surgical instruments.[Chinese Medical Equipment Journal,2024,45(6):1-8]
9.Genetic diversity of Ixodes persulcatus in parts of Inner Mongolia
Meng-Yu CUI ; Si SU ; Li-Li XING ; Lan MU ; Rui-Juan GAO ; Qi-Qi GUO ; Hong REN ; Dong-Dong QI ; Jing-Feng YU
Chinese Journal of Zoonoses 2024;40(4):295-301
The aim of this study was to clarify the genetic diversity and population history of Ixodes persulcatus in some ar-eas of Inner Mongolia in order to provide accurate data for effective vector control programs and reveal the transmission mecha-nism.Samples were collected in 10 areas of Inner Mongolia during the active tick season(April 2021-July 2023)using the flag-dragging and manual sampling methods.The 16S rRNA and COI gene were sequenced to clarify genetic diversity of I.per-sulcatus.The positivity rates for the COI gene and 16S rRNA were 90.00%and 98.33%respectively.Overall,18 and 15 haplotypes were identified for the COI gene and 16S rRNA,respectively,with a total haplotype diversity>0.762 and total nucleotide diversity<0.005.The Tajima's values and Fu's Fs were negative for significance.A nucleotide mismatch map was shown as a single peak.The genetic differentiation index FST of the population indicates a small degree of genetic differ-entiation of the population,while analysis of molecular vari-ance indicates that the variation within populations was greater than between populations.Phylogenetic tree and haplotype network plots showed confounding distributions between hap-lotypes.I.persulcatus from the Hinggan League and Hulun-buir regions can adapt to environmental changes and possess abundant genetic diversity.Genetic differentiation is mainly concentrated within the population and no geographical isolation was observed.
10.Protective Effect of Endogenous ω-3 Polyunsaturated Fatty Acid Against Cisplatin-Induced Myelosuppression
Qi-Hua XU ; Zong-Meng ZHANG ; Chao-Feng XING ; Han-Si CHEN ; Ke-Xin ZHENG ; Yun-Ping MU ; Zi-Jian ZHAO ; Fang-Hong LI
Journal of Experimental Hematology 2024;32(5):1601-1607
Objective:To investigate the protective effect of endogenous ω-3 polyunsaturated fatty acid(PUFA)against cisplatin-induced myelosuppression and the mechanism of reducing apoptosis in bone marrow nucleated cells using mfat-1 transgenic mice.Methods:The experimental animals were divided into 4 groups:wild-type mice normal control group,mfat-1 transgenic mice normal control group,wild-type mice model group and mfat-1 transgenic mice model group.The mice in the model group were injected intraperitoneally with 7.5 mg/kg cisplatin on day 0 and day 7 to construct a myelosuppression model,while the mice in the normal control group were injected intraperitoneally with an equal amount of saline,and their status was observed and their body weight was measured daily.Peripheral blood was taken after 14 day for routine blood analysis,and the content and proportion of PUFA in peripheral blood were detected using gas chromatography.Bone marrow nucleated cells in the femur of mice were counted.The histopathological changes in bone marrow were observed by histopathological staining.The apoptosis of nucleated cells and the expression level changes of apoptosis-related genes in the bone marrow of mice were detected by flow cytometry and fluorescence quantitative PCR.Results:Compared with wild-type mice,mfat-1 transgenic mice showed significantly increased levels of ω-3 PUFA in peripheral blood and greater tolerance to cisplatin.Peripheral blood analysis showed that endogenous ω-3 PUFA promoted the recovery of leukocytes,erythrocytes,platelets and haemoglobin in peripheral blood of myelosuppressed mice.The results of HE staining showed that endogenous ω-3 PUFA significantly improved the structural damage of bone marrow tissue induced by cisplatin.Flow cytometry and PCR showed that,compared with wild-type mice model group,the apoptosis rate of bone marrow nucleated cells in mfat-1 transgenic mice was significantly reduced(P<0.001),and the expression of anti-apoptotic genes Bcl-2 mRNA was significantly increased(P<0.01),while the expressions of pro-apoptotic genes Bax and Bak mRNA were significantly reduced(P<0.001,P<0.05).Conclusion:Endogenous ω-3 PUFA can reduce cisplatin-induced apoptosis in bone marrow nucleated cells,increase the number of peripheral blood cells and exert a protective effect against cisplatin-induced myelosuppression by regulating the expression of apoptosis-related genes.

Result Analysis
Print
Save
E-mail