1.Mechanotransduction proteins in intervertebral disc degeneration
Xilin GAO ; Si WU ; Chao ZHANG ; Liguo ZHU ; Bifeng FU ; Ping WANG
Chinese Journal of Tissue Engineering Research 2025;29(3):579-589
BACKGROUND:Recent research indicates that disc degeneration is closely related to abnormal stress load,and mechanotransduction proteins play a key role in it. OBJECTIVE:To investigate the role and mechanism of mechanotransduction proteins in the mechanotransduction process induced by abnormal mechanical stimulation in disc degeneration,and to summarize the current treatment strategies targeting mechanotransduction to delay intervertebral disc degeneration. METHODS:Using"intervertebral disc,nucleus pulposus,annulus fibrosus,cartilaginous endplate,cell,mechanics,signal transduction,protein,biomechanics"as Chinese search terms,and"intervertebral disc,nucleus pulposus,annulus fibrosus,cartilaginous endplate,cell,mechanical stimulation,signal transduction,protein,biomechanics"as English search terms,relevant literature in the PubMed and CNKI databases was searched.A total of 88 articles were ultimately included for review. RESULTS AND CONCLUSION:Disc cells can sense external mechanical stimulation through various mechanotransduction proteins and convert it into biological responses within the cells.These transduction proteins mainly include collagen proteins in the extracellular matrix,cell membrane surface receptors(such as integrins and ion channels),and cytoskeleton structural proteins.Their regulation of mechanotransduction processes primarily involves the activation of multiple pathways,such as the PI3K/AKT signaling pathway,nuclear factor-kB signaling pathway,and Ca2+/Calpain2/Caspase3 pathway.Mechanotransduction proteins play a key role in the mechanotransduction of disc cells.Abnormal expression of these proteins or resulting changes in the extracellular matrix environment can disrupt the mechanical balance of disc cells,leading to disc degeneration.In-depth study of the expression and regulatory mechanisms of mechanotransduction proteins in disc cells,and identification of key pathological links and therapeutic targets,is of significant importance for developing treatment strategies for disc degeneration.Current strategies to delay intervertebral disc degeneration by targeting mechanotransduction mainly include regulation of transduction proteins and improvement of the extracellular matrix.However,research in this area is still in its early stages.As research continues,new breakthroughs are expected in the regulation of disc degeneration by mechanotransduction proteins.
2.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
3.Metabonomic study of blood of mice with high-voltage electrical injury
Si-Yu CHEN ; Hui WANG ; Yan LUO ; Jia-Wen TAO ; Wen-Juan ZHANG ; Yang YUE ; Zheng-Ping YU ; Hui-Feng PI
Journal of Regional Anatomy and Operative Surgery 2024;33(2):100-106
Objective To explore the changes of metabonomics in blood of mice after high-voltage electric shock,then screen out the significantly changed differential metabolites and metabolic pathways.Methods The head of C57BL/6J mice was subjected to high-voltage electric shock(electric shock group)or exposed to acoustic and optical stimulation of high-voltage electric(control group),then the whole blood from mice were collected to separate serum.The dual platform combined metabonomic analysis based on gas chromatography-mass spectrometer(GC-MS)and liquid chromatography-mass spectrometer(LC-MS)was performed and orthogonal partial least squares discriminant analysis(OPLS-DA)was used to screen the differential metabolites and related metabolic pathways.Results A total of 415 differential metabolites were screened out in metabonomics in blood of mice after high-voltage electric shock,including 187 up-regulated and 228 down-regulated metabolites.These differentially metabolites were significantly enriched in metabolic pathways including central carbon metabolism in cancer,glucagon signaling pathway,etc.Conclusion By establishing the model of high-voltage electrical injury on experimental mice,this study reveals the significant change of metabolite content and metabolic pathway in blood by high-voltage electrical injury.Which provides a basis for the damage of blood metabolic activity by high-voltage electrical injury,and suggests the potential harm of high-voltage electrical injury to blood metabolic activity in the whole body.
4.Preparation and in vitro-in vivo evaluation of suvorexant orodispersible films
Peng ZHAO ; Cong-hui LI ; Si-yi SHUAI ; Bing YANG ; Hui ZHANG ; Nan LIU ; Ai-ping ZHENG ; Yong-jun WANG ; Zeng-ming WANG
Acta Pharmaceutica Sinica 2024;59(9):2659-2664
Orodispersible films (oral dispersible films), a novel form of oral solid dosage forms, are widely used for patients with dysphagia and those with uncontrollable autonomic behavior. In this study, suvorexant orodispersible film was prepared by hot melt extrusion technology, and the disintegration time, mechanical properties,
5.Rheology guided the preparation of suvorexant-copovidone solid dispersions via hot melt extrusion technology
Peng ZHAO ; Cong-hui LI ; Si-yi SHUAI ; Bing YANG ; Hui ZHANG ; Nan LIU ; Zeng-ming WANG ; Yong-jun WANG ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(8):2396-2403
The rheological properties of drug and carrier materials have a wide range of guiding significance for the formulation and process development of solid dispersions. In this study, the rheological properties of materials with different drug carrier ratios were systematically studied with suvorexant as the model drug and copovidone as the carrier material, which provided a sufficient basis for determining the formulation and process of solid dispersions. The optimal suvorexant-copovidone ratio obtained by oscillating temperature scanning was 1∶4. If the ratio is greater than 1∶ 4, the glass transformation temperature of the material will increase significantly, and the solubilization effect of the solid dispersion will show a downward trend. The results of oscillation temperature scanning and oscillation temperature sweep can show that when the extrusion temperature is greater than 150 ℃, the viscosity of the material is less than 10 000 Pa·s, and the melt can be extruded smoothly, and the best extrusion temperature of 160-180 ℃ can be obtained by combining the dissolution results. Finally, the dissolution of suvorexant tablets guided by rheological property studies in multiple media is similar to that of the commercially available tablets Belsomra. Therefore, rheological studies can screen and optimize the formulation and process of suvorexant solid dispersions at the mechanism level, which is of great significance to improve the success rate of R&D and shorten the R&D cycle of solid dispersions prepared by hot melt extrusion.
6.Design of emergency medical rescue information system based on microservices architecture
Jun-Jun WANG ; Xin ZHANG ; Ke-Yu FANG ; Hai-Long SI ; Xiao-Li QIN ; Ping CHEN
Chinese Medical Equipment Journal 2024;45(10):41-48
Objective To design an emergency medical rescue information system to ensure that emergency medical rescue institutions and teams at all levels can quickly access system support under emergency rescue conditions.Methods The emergency medical rescue information system was built with Browser/Server(B/S)architecture,microservices architecture,Java,JavaScript,Spring Boot,Spring Cloud and Alibaba framework,which used MySQL relational database,Redis cache database and Elasticsearch search engine for data storage and management.There were five functional modules involved in the system including the modules for triage,medical treatment,medical technical support,medical evacuation and command and management.Results The system developed behaved well in rapid deployment and response,and realized quick collection of casualty information and enhanced the efficiency and accuracy of casualty triage.Conclusion The system developed can be used in multi rescue scenarios to meet different requirements,which provides information system support for multi emergency medical rescue institutions and teams.[Chinese Medical Equipment Journal,2024,45(10):41-48]
7.Sarcopenia index as a predictor of in-hospital adverse events in patients with acute myocardial infarction after emergency PCI
Cheng-Si LI ; Zhang-Yu WANG ; Shao-Qing CAO ; Yu-Qin WANG ; Jiang-Ping YE ; Ye-Hong LIU ; Tian-Hui JIN ; Gang-Jun ZONG
Medical Journal of Chinese People's Liberation Army 2024;49(4):408-415
Objective To investigate the association between the serum creatinine/cystatin C ratio(SCr/Cys C)as a Sarcopenia index(SI)and the incidence of in-hospital adverse events in patients with acute myocardial infarction(AMI)undergoing emergency percutaneous coronary intervention(PCI).Additionally,we evaluate the predictive efficacy of the SI in predicting major adverse cardiovascular events(MACEs)during hospitalization.Methods A total of 306 patients with AMI who underwent emergency PCI in the 904th Hospital of PLA Joint Logistics Support Force from January 2020 to March 2023 were consecutively included in this retrospective analysis.Patients were divided into two groups based on the occurrence of MACEs during hospitalization:MACEs group(n=43)and non-MACEs group(n=263).Clinical characteristics and pre-PCI laboratory test results were collected.Univariate and multivariate logistic regression analyses were performed to identify independent risk factors for MACEs.The predictive performance of SI was assessed using receiver operating characteristic(ROC)curve analysis.Results The incidence of in-hospital MACEs in AMI patients was 14.1%.The results of the independent samples t-test showed that the SI level in MACEs group was significantly lower than that in non-MACEs group,with a statistically significant difference(P<0.001).The results of the multivariate logistic regression analysis suggested that new-onset atrial fibrillation,Killip class 2-4,SI,and TG were independent risk factors for in-hospital adverse events after emergency PCI.The ROC curve results showed that the predictive value of SI(AUC=0.741,95%CI 0.666-0.816)using the SCr/Cys C ratio was superior to that of single Cys C(AUC=0.658,95%CI 0.570-0.746)for predicting post-PCI MACEs,with a statistically significant difference(P<0.05),and the optimal cutoff value for SI was 78.14.After stratifying SI based on the cutoff value,the results of the independent samples t-test showed that compared to the higher SI group,the lower SI group had a higher occurrence of specific adverse events such as heart failure(P<0.001),malignant arrhythmias(P=0.009),and strokes(P=0.003),with statistically significant differences.Conclusions The results highlight SI as an independent risk factor for MACEs during hospitalization after emergency PCI in AMI patients.Furthermore,SI has proven to be an effective prognostic index for patient outcomes.
8.Molecular epidemiology of spotted fever group rickettsiae infections in wild rodents from Fengshan County,Guangxi
Si-Si CHEN ; Fang-Ni WANG ; Ze-Yun XU ; Rui JIAN ; Jing XUE ; Wen-Ping GUO
Chinese Journal of Zoonoses 2024;40(10):989-993
The aim of this study was to investigate the prevalence of spotted fever group rickettsia(SFGR)in wild rodents collected from Fengshan County in the Guangxi Zhuang Autonomous Region,and to determine their species.Wild rodents were captured in cages in Fengshan County,Hechi City,Guangxi Zhuang Autonomous Region.The rodents were identified according to morphological characteristics,and the findings were confirmed through molecular biology methods.Subsequently,spleen samples were collected,and DNA was extracted.The outer membrane protein A(ompA)gene was amplified with semi-nested PCR to determine the species of SFGR in captured wild rodents.After sequencing of the PCR products,homology and phylogenetic analyses of ompA gene sequences were performed.A total of 105 wild rodents belonging to seven species were captured.FGR was detected in six rodent species(Bandicota indica,Leopoldamys edwardsi,Mus caroli,Mus Pahari,Rat-tus andamanensis,and Rattus losea,but not Berylmys bower si),and the total positivity rate was 23.8%.Three Rickettsia species,Candidatus Rickettsia jingxinensis,Rickettsia raoultii,and Rickettsia sibirica,were identified from analysis of the ompA gene sequence.This study revealed the presence of three species of SFGR infecting wild rodents from Fengshan County,Guangxi Zhuang Autonomous Region,thus suggesting that Fengshan County is a natural focus of tick-borne spotted fever.This study highlights the need to strengthen monitoring and prevention measures for rickettsiosis.
9.Analysis of Plasma Metabolic Profile in Children with Transfusion-Dependent Thalassemia
Xiao-Lan LIU ; Wen-Zhong LI ; Qian ZHANG ; Xue-Mei WANG ; Yu-Ru ZHOU ; Cheng-Gao WU ; Si-Min XIONG ; Ai-Ping LE ; Zhang-Lin ZHANG
Journal of Experimental Hematology 2024;32(2):525-531
Objective:To explore the plasma metabolomic characteristics of children with transfusion-dependent thalassemia(TDT),and reveal the changes of metabolic pattern in children with TDT.Methods:23 children with TDT who received regular blood transfusion in Ganzhou Women and Children's Health Care Hospital in 2021 were selected,and 11 healthy children who underwent physical examination during the same period were selected as the control group.The routine indexes between children with TDT and the control group were compared,and then the metabolic composition of plasma samples from children with TDT and the control group was detected by liquid chromatography-mass spectrometry.An OPLS-DA model was established to perform differential analysis on the detected metabolites,and the differential metabolic pathways between the two groups were analyzed based on the differential metabolites.Results:The results of routine testing showed that the indexes of ferritin,bilirubin,total bile acid,glucose and triglycerides in children with TDT were significantly higher than those in healthy controls,while hemoglobin and total cholesterol were significantly lower(all P<0.05).However there was no significant difference in lactate dehydrogenase between the two groups(P>0.05).Compared with the control group,190 differential metabolites(VIP>1)were identified in TDT children.Among them,168 compounds such as arginine,proline and glycocholic acid were significantly increased,while the other 22 compounds such as myristic acid,eleostearic acid,palmitic acid and linoleic acid were significantly decreased.The metabolic pathway analysis showed that the metabolic impact of TDT on children mainly focused on the upregulation of amino acid metabolism and downregulation of lipid metabolism.Conclusion:The amino acid and lipid metabolism in children with TDT were significantly changed compared with the healthy control group.This finding is helpful to optimize the treatment choice for children with TDT,and provides a new idea for clinical treatment.
10.Mechanism of saikosaponin D enhancing temozolomide sensitivity in glioma cells via inducing endoplasmic reticulum stress
Gui-Mei LIU ; Rui ZHENG ; Xiao-Bin LIU ; Yong-Xian LIU ; Ya-Ping WANG ; Yu-Fu ZHANG ; Jing ZHANG ; Xiao-Yan JIN ; Yu-Si LIU
Chinese Pharmacological Bulletin 2024;40(6):1105-1114
Aim To investigate the synergistic sensiti-zation effect of saikosaponin D(SSD)combined with temozolomide(TMZ)on glioblastoma cells(GBM)and its molecular mechanism.Methods The sensitiv-ity of RG-2,U251 and LN-428 GBM cell lines to SSD and TMZ was analyzed by CCK-8 method combined with HE staining,and the optimal compatible concen-tration was screened.The effect of HE staining com-bined with Hoechst fluorescence staining on the prolif-eration of GBM cell line was detected by clonal forma-tion experiment.The autophagosome formation of GBM cells was observed by monodansylcadaverine(MDC)staining.The expression and distribution of endoplas-mic reticulum stress-related factors and apoptosis and autophagy proteins were detected by Western blot and ICC.Results The sensitivity order of GBM cells to TMZ was RG-2>U251>LN-428.The results of com-bined administration showed the synergistic inhibitory effect of SSD combined with TMZ on proliferation of GBM cell lines,which was confirmed by cell cloning formation experiment.Compared with the TMZ group,Hoechst fluorescence staining showed a significant in-crease in the number of nuclear bright staining in the combined administration group.MDC fluorescence staining showed that there were more dense green parti-cles in the cytoplasm of SSD/TMZ plus group than that of TMZ group.Western blot results showed that com-pared with TMZ group,the expression of ER stress markers GRP78,CHOP,p-PERK and ATF6 signifi-cantly increased in SSD/TMZ group(P<0.05).The expressions of apoptosis proteins caspase-12,caspase-9,caspase-3,cleaved caspase-3,Bax and autophagy proteins LC3 and Beclin-1 significantly increased(P<0.05),which were verified by ICC test.Conclusions SSD can cooperate with TMZ to inhibit the prolifera-tion of GBM cells and induce apoptosis and autophagy,and enhance the sensitivity of GBM cells to TMZ by ac-tivating endoplasmic reticulum stress pathway.

Result Analysis
Print
Save
E-mail