1.Effect and mechanism of proteasome inhibitor MG132 on memory impairment caused by chronic hypoxia in mice
Hua-Ping DONG ; Peng LI ; Xiao-Xu LI ; Si-Min ZHOU ; Heng XIAO ; Jia-Xin XIE ; Pei HUANG ; Yu WU ; Zhi-Feng ZHONG
Medical Journal of Chinese People's Liberation Army 2024;49(4):449-458
Objective To investigate the effect and mechanism of proteasome inhibitor MG132 on memory impairment induced by chronic hypoxia in mice.Methods(1)A hypoxic model of the mouse midbrain dopaminergic neuron cell line MN9D was established using a hypoxia workstation.To observe the effects of hypoxia on the expression of TH,Ub-K48 and Ub-K63,MN9D cells were divided into normoxia group and hypoxia(12 h,24 h and 48 h)groups.To observe the effects of MG132 on the expression of the above-mentioned proteins,MN9D cells were divided into normoxia group,hypoxia group and hypoxia + MG132(25,50,100,200 μmol/L)group.(2)A mouse model of memory impairment was established using a hypobaric chamber.To observe the effects of hypobaric hypoxia on the expression of TH,Ub-K48 and Ub-K63 in the substantia nigra compacta(SNc)of mice,thirty C57BL/6 mice were randomly and equally divided into normoxia group and hypobaric hypoxia(3 d and 21 d)groups,10 in each group.To observe the effects of MG132 on spatial memory impairment induced by hypobaric hypoxia,twenty-four C57BL/6 mice were randomly and equally divided into normoxia group,hypobaric hypoxia 21 d group and hypobaric hypoxia 21 d+MG132 group,8 in each group.(3)The protein expression levels of TH,Ub-K48,and Ub-K63 in MN9D cells which were either subjected to different durations of hypoxia treatment or pre-treated with MG132 prior to hypoxia treatment were detected using Western blotting(WB).The novel object recognition test was used to detect the memory function of mice.Immunofluorescence was used to detect the proportion of positive immunoreactive area of TH response in the SNc region.The expression levels of TH,Ub-K48,and Ub-K63 in the SNc region were detected by WB.Results(1)Compared with normoxia group,MN9D cells in hypoxia 24 h group showed increasing expression of Ub-K48 and Ub-K63(P<0.05),and decreasing expression of TH(P<0.05),and MN9D cells in all hypoxia groups showed increasing expression of Ub-K48/TH and Ub-K63/TH(P<0.05).Compared with hypoxia group,MN9D cells showed decreasing expression of Ub-K48/TH and Ub-K63/TH in hypoxia + MG132 100 umol/L group and hypoxia + MG132 200 umol/L group(P<0.05).(2)Compared with the mice in normoxia group,mice in 3 d and 21 d hypobaric hypoxia groups showed decreasing expression of TH(P<0.001),and increasing expression of Ub-K48/TH and Ub-K63/TH(P<0.05)in the SNc region.Compared with normoxia group,the mice in 21 d hypobaric hypoxia group showed a lower new object recognition index(P<0.01),and the proportion of positive immunoreactive area of TH response in the SNc region(P<0.05).Compared with 21 d hypobaric hypoxia group,the mice in hypobaric hypoxia 21 d+MG132 group showed a higher new object recognition index(P<0.01).Conclusion The proteasome inhibitor MG132 could alleviate the memory impairment induced by chronic hypoxia in mice,and its mechanism may be related to the inhibition of Ub-K63 and Ub-K48,which in turn upregulates expression of TH in dopaminergic neurons.
2.Establishment of mice gait analysis system based on DeepLabCut algorithm to evaluate motor function of aging mice
Zhi-Hong LI ; Yi-Hua SHENG ; You LI ; Zhi-Xiang PENG ; Xing-Yao ZENG ; Xin-Li GU ; Jia-Yi TIAN ; Si-Di LI
Chinese Pharmacological Bulletin 2024;40(9):1792-1799
Aim To establish a gait analysis system based on DeepLabCut(DLC)algorithm for evaluating motor function in aged mice.Methods Based on DLC algorithm in deep learning technology,treadmill device and fully closed design were used in the system,including software and hardware.This system was applied to evaluate gait characteristics of mice due to aging un-der different movement modes.Correlation analysis was used to explore the effects of body weight and body length on gait indica-tors.Results This system realized the synchronous analysis of three-dimensional gait(lateral and ventral plane)of mice at specific gait speed,and automatically quantified 47 gait indica-tors.Using this system,it was found that during walking(15 cm·s-1),the standard deviation of body turning angle decreased,forelimb sway duration,standard deviation of knee angle,mean outward angles of left and right hind paw increased in 8 and 15 month-old mice,compared with 2-month-old mice.However,15-month-old mice showed decreased walking frequency,and in-creased stride width,total duration of double support,and knee extension and contraction distance.In addition,at trot(20 cm·s-1),15-month-old mice were unable to walk steadily,and 8-month-old mice had increased total duration of double support and mean outward angles of left hind paw,compared with 2-month-old mice.Correlation analysis revealed that indicators like walking frequency,stride width,forelimb sway duration,total duration of double support,standard deviation of knee an-gle,knee extension and contraction distance,were not affected by changes in body weight and body length.Conclusions The gait analysis system based on DLC algorithm can achieve a more sensitive,accurate and comprehensive evaluation of the gait of aged mice,distinguishing the gait characteristics of aged mice to maintain gait stability,and selecting behavioral indicators that better reflect the gait changes of aged mice.It provides a meth-odological basis for more effective assessment of efficacy and side effects of drugs for anti-aging and anti-decline of motor coordina-tion in the future.
3.The first female case of human monkeypox in Yunnan Province
Yang ZHOU ; De-Li QI ; Zheng-Ji CHEN ; Zhi-Peng MAO ; Min DAI ; Yu-Dong GAO ; Si-Yi LUO ; Shao-Hua PAN ; Hong-Hai SU
Chinese Journal of Zoonoses 2024;40(6):599-603
This is the first reported case of a female with monkeypox infection in Kunming City,Yunnan Province.An epi-demiological investigation was conducted to provide a scientific basis for the prevention and control of monkeypox epidemics in China,especially for early detection in females in accordance with the"Monkeypox prevention and control program(2023 ver-sion)".Diagnosis was performed as described in the"Monkeypox Diagnosis and Treatment Guidelines(2022 version)".Speci-mens were collected for laboratory testing.The epidemiological investigation determined that the female patient had sexual in-tercourse with her newly married husband once before disease onset and the husband hid his history of male homosexual sex.The laboratory test results of the woman and her husband were positive for the nucleic acid of the monkeypox virus.Both had typical clinical symptoms,including rash.The epidemiological investigation,clinical symptoms,laboratory test results,and previous epidemic data of monkeypox in Yunnan province confirmed the woman as the first female infected with monkeypox in Yunnan Province and her husband was the presumed source of infection.
4.Tissue distribution of Qingfei Paidu Decoction based on HPLC-MS/MS.
Yan ZHANG ; Hai-Yu ZHAO ; Li-Xin YANG ; Yan-Yan ZHOU ; Bao-Lin BIAN ; Hua-Kai WU ; Hua-Ying ZHU ; Nan SI ; Peng-Fei LIN ; Liang WANG ; Hong-Jie WANG
China Journal of Chinese Materia Medica 2023;48(11):3074-3085
The tissue distribution of Qingfei Paidu Decoction was studied by HPLC-MS/MS in vivo. Hypersil GOLD C_(18) column(2.1 mm×50 mm, 1.9 μm) was used for gradient elution with acetonitrile as the mobile phase A and 0.1% formic acid solution as the mobile phase B. High-resolution liquid chromatography-mass spectrometry in both positive and negative ion scanning mode and multiple response monitoring(MRM) mode was employed to analyze the behaviors of the active components of Qingfei Paidu Decoction in diffe-rent tissues. The results showed that 19, 9, 17, 14, 22, 19, 24, and 2 compounds were detected in plasma, heart, liver, spleen, lung, kidney, large intestine, and brain, respectively. The compounds belonged to 8 groups, covering 14 herbs in the prescription. After administration with Qingfei Paidu Decoction, the compounds were rapidly distributed in various tissues, especially in the lung, liver, large intestine, and kidney. The majority of the compounds displayed secondary distribution. This study comprehensively analyzed the distribution rules of the main active components in Qingfei Paidu Decoction and provided a basis for the clinical application.
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Tissue Distribution
;
Drugs, Chinese Herbal
5.Electroacupuncture Alleviates Functional Constipation in Mice by Activating Enteric Glial Cell Autophagy via PI3K/AKT/mTOR Signaling.
Lu WANG ; Ying CHEN ; Ming-Min XU ; Wei CAO ; Qian-Hua ZHENG ; Si-Yuan ZHOU ; Jun-Peng YAO ; Meng-Han XI ; Hai-Yan QIN ; Ying LI ; Wei ZHANG
Chinese journal of integrative medicine 2023;29(5):459-469
OBJECTIVE:
To investigate autophagy-related mechanisms of electroacupuncture (EA) action in improving gastrointestinal motility in mice with functional constipation (FC).
METHODS:
According to a random number table, the Kunming mice were divided into the normal control, FC and EA groups in Experiment I. The autophagy inhibitor 3-methyladenine (3-MA) was used to observe whether it antagonized the effects of EA in Experiment II. An FC model was established by diphenoxylate gavage. Then the mice were treated with EA stimulation at Tianshu (ST 25) and Shangjuxu (ST 37) acupoints. The first black stool defecation time, the number, weight, and water content of 8-h feces, and intestinal transit rate were used to assess intestinal transit. Colonic tissues underwent histopathological assessment, and the expressions of autophagy markers microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 were detected by immunohistochemical staining. The expressions of phosphoinositide 3-kinases (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) signaling pathway members were investigated by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. The relationship between enteric glial cells (EGCs) and autophagy was observed by confocal immunofluorescence microscopy, localization analysis, and electron microscopy.
RESULTS:
EA treatment shortened the first black stool defecation time, increased the number, weight, and water content of 8-h feces, and improved the intestinal transit rate in FC mice (P<0.01). In terms of a putative autophagy mechanism, EA treatment promoted the expressions of LC3 and Beclin-1 proteins in the colonic tissue of FC mice (P<0.05), with glial fibrillary acidic protein (GFAP) and LC3 significantly colocalized. Furthermore, EA promoted colonic autophagy in FC mice by inhibiting PI3K/AKT/mTOR signaling (P<0.05 or P<0.01). The positive effect of EA on intestinal motility in FC mice was blocked by 3-MA.
CONCLUSION
EA treatment can inhibit PI3K/AKT/mTOR signaling in the colonic tissues of FC mice, thereby promoting EGCs autophagy to improve intestinal motility.
Mice
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Electroacupuncture
;
Beclin-1
;
Signal Transduction
;
Constipation/therapy*
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy
;
Neuroglia/metabolism*
;
Mammals/metabolism*
6.Genotype-environment interaction on arterial stiffness: A pedigree-based study.
Xue Heng WANG ; Si Yue WANG ; He Xiang PENG ; Meng FAN ; Huang Da GUO ; Tian Jiao HOU ; Meng Ying WANG ; Yi Qun WU ; Xue Ying QIN ; Xun TANG ; Jin LI ; Da Fang CHEN ; Yong Hua HU ; Tao WU
Journal of Peking University(Health Sciences) 2023;55(3):400-407
OBJECTIVE:
To utilized the baseline data of the Beijing Fangshan Family Cohort Study, and to estimate whether the association between a healthy lifestyle and arterial stiffness might be modified by genetic effects.
METHODS:
Probands and their relatives from 9 rural areas in Fangshan district, Beijing were included in this study. We developed a healthy lifestyle score based on five lifestyle behaviors: smoking, alcohol consumption, body mass index (BMI), dietary pattern, and physical activity. The measurements of arterial stiffness were brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI). A variance component model was used to determine the heritability of arterial stiffness. Genotype-environment interaction effects were performed by the maximum likelihood methods. Subsequently, 45 candidate single nucleotide polymorphisms (SNPs) located in the glycolipid metabolism pathway were selected, and generalized estimated equations were used to assess the gene-environment interaction effects between particular genetic loci and healthy lifestyles.
RESULTS:
A total of 6 302 study subjects across 3 225 pedigrees were enrolled in this study, with a mean age of 56.9 years and 45.1% male. Heritability of baPWV and ABI was 0.360 (95%CI: 0.302-0.418) and 0.243 (95%CI: 0.175-0.311), respectively. Significant genotype-healthy diet interaction on baPWV and genotype-BMI interaction on ABI were observed. Following the findings of genotype-environment interaction analysis, we further identified two SNPs located in ADAMTS9-AS2 and CDH13 might modify the association between healthy dietary pattern and arterial stiffness, indicating that adherence to a healthy dietary pattern might attenuate the genetic risk on arterial stiffness. Three SNPs in CDKAL1, ATP8B2 and SLC30A8 were shown to interact with BMI, implying that maintaining BMI within a healthy range might decrease the genetic risk of arterial stiffness.
CONCLUSION
The current study discovered that genotype-healthy dietary pattern and genotype-BMI interactions might affect the risk of arterial stiffness. Furthermore, we identified five genetic loci that might modify the relationship between healthy dietary pattern and BMI with arterial stiffness. Our findings suggested that a healthy lifestyle may reduce the genetic risk of arterial stiffness. This study has laid the groundwork for future research exploring mechanisms of arterial stiffness.
Humans
;
Male
;
Middle Aged
;
Female
;
Ankle Brachial Index
;
Cohort Studies
;
Gene-Environment Interaction
;
Vascular Stiffness/genetics*
;
Pedigree
;
Pulse Wave Analysis/methods*
;
Genotype
7.The expression and function of PD-L1 in CD133(+) human liver cancer stem-like cells.
Yu Di BAI ; Mao Lin SHI ; Si Qi LI ; Xiao Li WANG ; Jing Jing PENG ; Dai Jun ZHOU ; Fei Fan SUN ; Hua LI ; Chao WANG ; Min DU ; Tao ZHANG ; Dong LI
Chinese Journal of Oncology 2023;45(2):117-128
Objective: To investigate the expression of programmed death protein-ligand 1 (PD-L1) in liver cancer stem-like cells (LCSLC) and its effect on the characteristics of tumor stem cells and tumor biological function, to explore the upstream signaling pathway regulating PD-L1 expression in LCSLC and the downstream molecular mechanism of PD-L1 regulating stem cell characteristics, also tumor biological functions. Methods: HepG2 was cultured by sphere-formating method to obtain LCSLC. The expressions of CD133 and other stemness markers were detected by flow cytometry, western blot and real-time quantitative polymerase chain reaction (RT-qPCR) were used to detect the expressions of stemness markers and PD-L1. The biological functions of the LCSLC were tested by cell function assays, to confirm that the LCSLC has the characteristics of tumor stem cells. LCSLC was treated with cell signaling pathway inhibitors to identify relevant upstream signaling pathways mediating PD-L1 expression changes. The expression of PD-L1 in LCSLC was down regulated by small interfering RNA (siRNA), the expression of stem cell markers, tumor biological functions of LCSLC, and the changes of cell signaling pathways were detected. Results: Compared with HepG2 cells, the expression rate of CD133 in LCSLC was upregulated [(92.78±6.91)% and (1.40±1.77)%, P<0.001], the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were also higher than those in HepG2 cells (P<0.05), the number of sphere-formating cells increased on day 7 [(395.30±54.05) and (124.70±19.30), P=0.001], cell migration rate increased [(35.41±6.78)% and (10.89±4.34)%, P=0.006], the number of transmembrane cells increased [(75.77±10.85) and (20.00±7.94), P=0.002], the number of cloned cells increased [(120.00±29.51) and (62.67±16.77), P=0.043]. Cell cycle experiments showed that LCSLC had significantly more cells in the G(0)/G(1) phase than those in HepG2 [(54.89±3.27) and (32.36±1.50), P<0.001]. The tumor formation experiment of mice showed that the weight of transplanted tumor in LCSLC group was (1.32±0.17)g, the volume is (1 779.0±200.2) mm(3), were higher than those of HepG2 cell [(0.31±0.06)g and (645.6±154.9)mm(3), P<0.001]. The expression level of PD-L1 protein in LCSLC was 1.88±0.52 and mRNA expression level was 2.53±0.62, both of which were higher than those of HepG2 cells (P<0.05). The expression levels of phosphorylation signal transduction and transcription activation factor 3 (p-STAT3) and p-Akt in LCSLC were higher than those in HepG2 cells (P<0.05). After the expression of p-STAT3 and p-Akt was down-regulated by inhibitor treatment, the expression of PD-L1 was also down-regulated (P<0.05). In contrast, the expression level of phosphorylated extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) in LCSLC was lower than that in HepG2 cells (P<0.01), there was no significant change in PD-L1 expression after down-regulated by inhibitor treatment (P>0.05). After the expression of PD-L1 was knockdown by siRNA, the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were decreased compared with those of siRNA-negative control (NC) group (P<0.05). The number of sphere-formating cells decreased [(45.33±12.01) and (282.00±29.21), P<0.001], the cell migration rate was lower than that in siRNA-NC group [(20.86±2.74)% and (46.73±15.43)%, P=0.046], the number of transmembrane cells decreased [(39.67±1.53) and (102.70±11.59), P=0.001], the number of cloned cells decreased [(57.67±14.57) and (120.70±15.04), P=0.007], the number of cells in G(0)/G(1) phase decreased [(37.68±2.51) and (57.27±0.92), P<0.001], the number of cells in S phase was more than that in siRNA-NC group [(30.78±0.52) and (15.52±0.83), P<0.001]. Tumor formation in mice showed that the tumor weight of shRNA-PD-L1 group was (0.47±0.12)g, the volume is (761.3±221.4)mm(3), were lower than those of shRNA-NC group [(1.57±0.45)g and (1 829.0±218.3)mm(3), P<0.001]. Meanwhile, the expression levels of p-STAT3 and p-Akt in siRNA-PD-L1 group were decreased (P<0.05), while the expression levels of p-ERK1/2 and β-catenin did not change significantly (P>0.05). Conclusion: Elevated PD-L1 expression in CD133(+) LCSLC is crucial to maintain stemness and promotes the tumor biological function of LCSLC.
Humans
;
Animals
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
B7-H1 Antigen/metabolism*
;
Ligands
;
Liver Neoplasms/pathology*
;
RNA, Small Interfering/metabolism*
;
Neoplastic Stem Cells/physiology*
;
Cell Line, Tumor
;
Cell Proliferation
8.Progress in research of risk prediction of non-syndromic oral clefts using genetic information.
Si Yue WANG ; He Xiang PENG ; En Ci XUE ; Xi CHEN ; Xue Heng WANG ; Meng FAN ; Meng Ying WANG ; Nan LI ; Jing LI ; Zhi Bo ZHOU ; Hong Ping ZHU ; Yong Hua HU ; Tong WU
Chinese Journal of Epidemiology 2023;44(3):504-510
Non-syndromic oral cleft (NSOC), a common birth defect, remains to be a critical public health problem in China. In the context of adjustment of childbearing policy for two times in China and the increase of pregnancy at older childbearing age, NSOC risk prediction will provide evidence for high-risk population identification and prenatal counseling. Genome-wide association study and second generation sequencing have identified multiple loci associated with NSOC, facilitating the development of genetic risk prediction of NSOC. Despite the marked progress, risk prediction models of NSOC still faces multiple challenges. This paper summarizes the recent progress in research of NSOC risk prediction models based on the results of extensive literature retrieval to provide some insights for the model development regarding research design, variable selection, model-build strategy and evaluation methods.
Humans
;
Cleft Palate/genetics*
;
Cleft Lip/genetics*
;
Genome-Wide Association Study
;
Genetic Predisposition to Disease
;
Risk Factors
;
Polymorphism, Single Nucleotide
9.Effects of three-dimensional bioprinting antibacterial hydrogel on full-thickness skin defect wounds in rats.
Rong Hua JIN ; Zhen Zhen ZHANG ; Peng Qin XU ; Si Zhan XIA ; Ting Ting WENG ; Zhi Kang ZHU ; Xin Gang WANG ; Chuan Gang YOU ; Chun Mao HAN
Chinese Journal of Burns 2023;39(2):165-174
Objective: To explore the effects of three-dimensional (3D) bioprinting gelatin methacrylamide (GelMA) hydrogel loaded with nano silver on full-thickness skin defect wounds in rats. Methods: The experimental research method was adopted. The morphology, particle diameter, and distribution of silver nanoparticles in nano silver solution with different mass concentrations and the pore structure of silver-containing GelMA hydrogel with different final mass fractions of GelMA were observed by scanning electron microscope and the pore size was calculated. On treatment day 1, 3, 7, and 14, the concentration of nano silver released from the hydrogel containing GelMA with final mass fraction of 15% and nano silver with final mass concentration of 10 mg/L was detected by mass spectrometer. At 24 h of culture, the diameters of inhibition zone of GelMA hydrogel containing final mass concentration of 0 (no nano silver), 25, 50, and 100 mg/L nano silver against Staphylococcus aureus and Escherichia coli were detected. Fibroblasts (Fbs) and adipose stem cells (ASCs) were isolated respectively by enzymatic digestion using the discarded prepuce after circumcision from a 5-year-old healthy boy who was treated in the Department of Urology of the Second Affiliated Hospital of Zhejiang University School of Medicine in July 2020, and the discarded fat tissue after liposuction from a 23-year-old healthy woman who was treated in the Department of Plastic Surgery of the Hospital in July 2020. The Fbs were divided into blank control group (culture medium only), 2 mg/L nano sliver group, 5 mg/L nano sliver group, 10 mg/L nano sliver group, 25 mg/L nano sliver group, and 50 mg/L nano sliver group, which were added with the corresponding final mass concentrations of nano sliver solution, respectively. At 48 h of culture, the Fb proliferation viability was detected by cell counting kit 8 method. The Fbs were divided into 0 mg/L silver-containing GelMA hydrogel group, 10 mg/L silver-containing GelMA hydrogel group, 50 mg/L silver-containing GelMA hydrogel group, and 100 mg/L silver-containing GelMA hydrogel group and then were correspondingly treated. On culture day 1, 3, and 7, the Fb proliferation viability was detected as before. The ASCs were mixed into GelMA hydrogel and divided into 3D bioprinting group and non-printing group. On culture day 1, 3, and 7, the ASC proliferation viability was detected as before and cell growth was observed by live/dead cell fluorescence staining. The sample numbers in the above experiments were all 3. Four full-thickness skin defect wounds were produced on the back of 18 male Sprague-Dawley rats aged 4 to 6 weeks. The wounds were divided into hydrogel alone group, hydrogel/nano sliver group, hydrogel scaffold/nano sliver group, and hydrogel scaffold/nano sliver/ASC group, and transplanted with the corresponding scaffolds, respectively. On post injury day (PID) 4, 7, 14, and 21, the wound healing was observed and the wound healing rate was calculated (n=6). On PID 7 and 14, histopathological changes of wounds were observed by hematoxylin eosin staining (n=6). On PID 21, collagen deposition of wounds was observed by Masson staining (n=3). Data were statistically analyzed with one-way analysis of variance, analysis of variance for repeated measurement, Bonferroni correction, and independent sample t test. Results: The sliver nano particles in nano silver solution with different mass concentrations were all round, in scattered distribution and uniform in size. The silver-containing GelMA hydrogels with different final mass fractions of GelMA all showed pore structures of different sizes and interconnections. The pore size of silver-containing GelMA hydrogel with 10% final mass fraction was significantly larger than that of silver-containing GelMA hydrogels with 15% and 20% final mass fractions (with P values both below 0.05). On treatment day 1, 3, and 7, the concentration of nano silver released from silver-containing GelMA hydrogel in vitro showed a relatively flat trend. On treatment day 14, the concentration of released nano silver in vitro increased rapidly. At 24 h of culture, the diameters of inhibition zone of GelMA hydrogel containing 0, 25, 50, and 100 mg/L nano silver against Staphylococcus aureus and Escherichia coli were 0, 0, 0.7, and 2.1 mm and 0, 1.4, 3.2, and 3.3 mm, respectively. At 48 h of culture, the proliferation activity of Fbs in 2 mg/L nano silver group and 5 mg/L nano silver group was both significantly higher than that in blank control group (P<0.05), and the proliferation activity of Fbs in 10 mg/L nano silver group, 25 mg/L nano silver group, and 50 mg/L nano silver group was all significantly lower than that in blank control group (P<0.05). Compared with the that of Fbs in 0 mg/L silver-containing GelMA hydrogel group, the proliferation activity of Fbs in 50 mg/L silver-containing GelMA hydrogel group and 100 mg/L silver-containing GelMA hydrogel group was all significantly decreased on culture day 1 (P<0.05); the proliferation activity of Fbs in 50 mg/L silver-containing GelMA hydrogel group was significantly increased (P<0.05), while the proliferation activity of Fbs in 100 mg/L silver-containing GelMA hydrogel group was significantly decreased on culture day 3 (P<0.05); the proliferation activity of Fbs in 100 mg/L silver-containing GelMA hydrogel group was significantly decreased on culture day 7 (P<0.05). The proliferation activity of ASCs in 3D bioprinting group show no statistically significant differences to that in non-printing group on culture day 1 (P>0.05). The proliferation activity of ASCs in 3D bioprinting group was significantly higher than that in non-printing group on culture day 3 and 7 (with t values of 21.50 and 12.95, respectively, P<0.05). On culture day 1, the number of dead ASCs in 3D bioprinting group was slightly more than that in non-printing group. On culture day 3 and 5, the majority of ASCs in 3D bioprinting group and non-printing group were living cells. On PID 4, the wounds of rats in hydrogel alone group and hydrogel/nano sliver group had more exudation, and the wounds of rats in hydrogel scaffold/nano sliver group and hydrogel scaffold/nano sliver/ASC group were dry without obvious signs of infection. On PID 7, there was still a small amount of exudation on the wounds of rats in hydrogel alone group and hydrogel/nano sliver group, while the wounds of rats in hydrogel scaffold/nano sliver group and hydrogel scaffold/nano sliver/ASC group were dry and scabbed. On PID 14, the hydrogels on the wound surface of rats in the four groups all fell off. On PID 21, a small area of wounds remained unhealed in hydrogel alone group. On PID 4 and 7, the wound healing rates of rats in hydrogel scaffold/nano sliver/ASC group were significantly higher than those of the other three groups (P<0.05). On PID 14, the wound healing rate of rats in hydrogel scaffold/nano sliver/ASC group was significantly higher than the wound healing rates in hydrogel alone group and hydrogel/nano sliver group (all P<0.05). On PID 21, the wound healing rate of rats in hydrogel alone group was significantly lower than that in hydrogel scaffold/nano sliver/ASC group (P<0.05). On PID 7, the hydrogels on the wound surface of rats in the four groups remained in place; on PID 14, the hydrogel in hydrogel alone group was separated from the wounds of rats, while some hydrogels still existed in the new tissue of the wounds of rats in the other three groups. On PID 21, the collagen arrangement in the wounds of rats in hydrogel alone group was out of order, while the collagen arrangement in the wounds of rats in hydrogel/nano sliver group, and hydrogel scaffold/nano sliver/ASC group was relatively orderly. Conclusions: Silver-containing GelMA hydrogel has good biocompatibility and antibacterial properties. Its three-dimensional bioprinted double-layer structure can better integrate with new formed tissue in the full-thickness skin defect wounds in rats and promote wound healing.
Male
;
Rats
;
Animals
;
Humans
;
Hydrogels/pharmacology*
;
Bioprinting
;
Metal Nanoparticles
;
Rats, Sprague-Dawley
;
Silver/pharmacology*
;
Soft Tissue Injuries
;
Anti-Bacterial Agents
10.Protective Mechanism of Cordyceps sinensis Treatment on Acute Kidney Injury-Induced Acute Lung Injury through AMPK/mTOR Signaling Pathway.
Ruo-Lin WANG ; Shu-Hua LIU ; Si-Heng SHEN ; Lu-Yong JIAN ; Qi YUAN ; Hua-Hui GUO ; Jia-Sheng HUANG ; Peng-Hui CHEN ; Ren-Fa HUANG
Chinese journal of integrative medicine 2023;29(10):875-884
OBJECTIVE:
To investigate protective effect of Cordyceps sinensis (CS) through autophagy-associated adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in acute kidney injury (AKI)-induced acute lung injury (ALI).
METHODS:
Forty-eight male Sprague-Dawley rats were divided into 4 groups according to a random number table, including the normal saline (NS)-treated sham group (sham group), NS-treated ischemia reperfusion injury (IRI) group (IRI group), and low- (5 g/kg·d) and high-dose (10 g/kg·d) CS-treated IRI groups (CS1 and CS2 groups), 12 rats in each group. Nephrectomy of the right kidney was performed on the IRI rat model that was subjected to 60 min of left renal pedicle occlusion followed by 12, 24, 48, and 72 h of reperfusion. The wet-to-dry (W/D) ratio of lung, levels of serum creatinine (Scr), blood urea nitrogen (BUN), inflammatory cytokines such as interleukin- β and tumor necrosis factor- α, and biomarkers of oxidative stress such as superoxide dismutase, malonaldehyde (MDA) and myeloperoxidase (MPO), were assayed. Histological examinations were conducted to determine damage of tissues in the kidney and lung. The protein expressions of light chain 3 II/light chain 3 I (LC3-II/LC3-I), uncoordinated-51-like kinase 1 (ULK1), P62, AMPK and mTOR were measured by Western blot and immunohistochemistry, respectively.
RESULTS:
The renal IRI induced pulmonary injury following AKI, resulting in significant increases in W/D ratio of lung, and the levels of Scr, BUN, inflammatory cytokines, MDA and MPO (P<0.01); all of these were reduced in the CS groups (P<0.05 or P<0.01). Compared with the IRI groups, the expression levels of P62 and mTOR were significantly lower (P<0.05 or P<0.01), while those of LC3-II/LC3-I, ULK1, and AMPK were significantly higher in the CS2 group (P<0.05 or P<0.01).
CONCLUSION
CS had a potential in treating lung injury following renal IRI through activation of the autophagy-related AMPK/mTOR signaling pathway in AKI-induced ALI.
Rats
;
Male
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Cordyceps/metabolism*
;
Rats, Sprague-Dawley
;
Kidney/pathology*
;
Acute Kidney Injury/metabolism*
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Reperfusion Injury/metabolism*
;
Cytokines/metabolism*
;
Acute Lung Injury/drug therapy*
;
Mammals/metabolism*

Result Analysis
Print
Save
E-mail