1.Lactobacillus johnsonii JERA01 upregulates the production of Th1 cytokines and modulates dendritic cells-mediated immune response
The Korean Journal of Physiology and Pharmacology 2025;29(3):271-281
		                        		
		                        			
		                        			 Lactic acid bacteria are known to have various effects on the immune system. The type and extent of the effect differ, depending on the type of lactic acid bacteria. This study aimed to investigate the effects of Lactobacillus johnsonii bacterin on mouse-derived immune cells. Treating splenocytes with L. johnsonii bacterin slightly increased the metabolic activity. Additionally, the expression of the activation marker CD25 and production of the Th1-type inflammatory cytokine interferon (IFN)-gamma increased. We confirmed that the increase in IFN-gamma production due to L. johnsonii stimulation was mainly due to T and B cells among splenocytes. Treating dendritic cells (DCs) with L. johnsonii bacterin at concentrations of 10 6 and 10 7 cfu/ ml significantly increased tumor necrosis factor-alpha, a pro-inflammatory cytokine, and interleukin-12, a cell-mediated immunity cytokine. Additionally, the expression of surface markers increased. Allogeneic mixed lymphocyte reactions showed that L. johnsonii reduced the antigen-presenting ability of DCs. In cocultures of DCs and splenocytes, L. johnsonii decreased cellular metabolic activity and increased cell death. L. johnsonii upregulated the expression of programmed death ligand 1 on DCs. The findings of this study indicate that L. johnsonii bacterin has immunomodulatory and immunostimulatory effects. While L. johnsonii increased the expression of cytokines and surface markers of immune cells, it modulated DC-mediated immune response. Further studies are needed to determine the effects of L. johnsonii bacterin on DCs and related immune cells. 
		                        		
		                        		
		                        		
		                        	
2.The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats
Yoon-Jo LEE ; Ji-Hyeon OH ; Suyeon PARK ; Jongho CHOI ; Min-Ho HONG ; HaeYong KWEON ; Weon-Sik CHAE ; Xiangguo CHE ; Je-Yong CHOI ; Seong-Gon KIM
Tissue Engineering and Regenerative Medicine 2025;22(1):91-104
		                        		
		                        			 BACKGROUND:
		                        			Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives. 
		                        		
		                        			METHODS:
		                        			This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses. 
		                        		
		                        			RESULTS:
		                        			The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group.Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity. 
		                        		
		                        			CONCLUSION
		                        			These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients. 
		                        		
		                        		
		                        		
		                        	
3.Lactobacillus johnsonii JERA01 upregulates the production of Th1 cytokines and modulates dendritic cells-mediated immune response
The Korean Journal of Physiology and Pharmacology 2025;29(3):271-281
		                        		
		                        			
		                        			 Lactic acid bacteria are known to have various effects on the immune system. The type and extent of the effect differ, depending on the type of lactic acid bacteria. This study aimed to investigate the effects of Lactobacillus johnsonii bacterin on mouse-derived immune cells. Treating splenocytes with L. johnsonii bacterin slightly increased the metabolic activity. Additionally, the expression of the activation marker CD25 and production of the Th1-type inflammatory cytokine interferon (IFN)-gamma increased. We confirmed that the increase in IFN-gamma production due to L. johnsonii stimulation was mainly due to T and B cells among splenocytes. Treating dendritic cells (DCs) with L. johnsonii bacterin at concentrations of 10 6 and 10 7 cfu/ ml significantly increased tumor necrosis factor-alpha, a pro-inflammatory cytokine, and interleukin-12, a cell-mediated immunity cytokine. Additionally, the expression of surface markers increased. Allogeneic mixed lymphocyte reactions showed that L. johnsonii reduced the antigen-presenting ability of DCs. In cocultures of DCs and splenocytes, L. johnsonii decreased cellular metabolic activity and increased cell death. L. johnsonii upregulated the expression of programmed death ligand 1 on DCs. The findings of this study indicate that L. johnsonii bacterin has immunomodulatory and immunostimulatory effects. While L. johnsonii increased the expression of cytokines and surface markers of immune cells, it modulated DC-mediated immune response. Further studies are needed to determine the effects of L. johnsonii bacterin on DCs and related immune cells. 
		                        		
		                        		
		                        		
		                        	
4.The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats
Yoon-Jo LEE ; Ji-Hyeon OH ; Suyeon PARK ; Jongho CHOI ; Min-Ho HONG ; HaeYong KWEON ; Weon-Sik CHAE ; Xiangguo CHE ; Je-Yong CHOI ; Seong-Gon KIM
Tissue Engineering and Regenerative Medicine 2025;22(1):91-104
		                        		
		                        			 BACKGROUND:
		                        			Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives. 
		                        		
		                        			METHODS:
		                        			This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses. 
		                        		
		                        			RESULTS:
		                        			The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group.Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity. 
		                        		
		                        			CONCLUSION
		                        			These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients. 
		                        		
		                        		
		                        		
		                        	
5.Lactobacillus johnsonii JERA01 upregulates the production of Th1 cytokines and modulates dendritic cells-mediated immune response
The Korean Journal of Physiology and Pharmacology 2025;29(3):271-281
		                        		
		                        			
		                        			 Lactic acid bacteria are known to have various effects on the immune system. The type and extent of the effect differ, depending on the type of lactic acid bacteria. This study aimed to investigate the effects of Lactobacillus johnsonii bacterin on mouse-derived immune cells. Treating splenocytes with L. johnsonii bacterin slightly increased the metabolic activity. Additionally, the expression of the activation marker CD25 and production of the Th1-type inflammatory cytokine interferon (IFN)-gamma increased. We confirmed that the increase in IFN-gamma production due to L. johnsonii stimulation was mainly due to T and B cells among splenocytes. Treating dendritic cells (DCs) with L. johnsonii bacterin at concentrations of 10 6 and 10 7 cfu/ ml significantly increased tumor necrosis factor-alpha, a pro-inflammatory cytokine, and interleukin-12, a cell-mediated immunity cytokine. Additionally, the expression of surface markers increased. Allogeneic mixed lymphocyte reactions showed that L. johnsonii reduced the antigen-presenting ability of DCs. In cocultures of DCs and splenocytes, L. johnsonii decreased cellular metabolic activity and increased cell death. L. johnsonii upregulated the expression of programmed death ligand 1 on DCs. The findings of this study indicate that L. johnsonii bacterin has immunomodulatory and immunostimulatory effects. While L. johnsonii increased the expression of cytokines and surface markers of immune cells, it modulated DC-mediated immune response. Further studies are needed to determine the effects of L. johnsonii bacterin on DCs and related immune cells. 
		                        		
		                        		
		                        		
		                        	
6.The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats
Yoon-Jo LEE ; Ji-Hyeon OH ; Suyeon PARK ; Jongho CHOI ; Min-Ho HONG ; HaeYong KWEON ; Weon-Sik CHAE ; Xiangguo CHE ; Je-Yong CHOI ; Seong-Gon KIM
Tissue Engineering and Regenerative Medicine 2025;22(1):91-104
		                        		
		                        			 BACKGROUND:
		                        			Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives. 
		                        		
		                        			METHODS:
		                        			This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses. 
		                        		
		                        			RESULTS:
		                        			The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group.Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity. 
		                        		
		                        			CONCLUSION
		                        			These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients. 
		                        		
		                        		
		                        		
		                        	
7.Lactobacillus johnsonii JERA01 upregulates the production of Th1 cytokines and modulates dendritic cells-mediated immune response
The Korean Journal of Physiology and Pharmacology 2025;29(3):271-281
		                        		
		                        			
		                        			 Lactic acid bacteria are known to have various effects on the immune system. The type and extent of the effect differ, depending on the type of lactic acid bacteria. This study aimed to investigate the effects of Lactobacillus johnsonii bacterin on mouse-derived immune cells. Treating splenocytes with L. johnsonii bacterin slightly increased the metabolic activity. Additionally, the expression of the activation marker CD25 and production of the Th1-type inflammatory cytokine interferon (IFN)-gamma increased. We confirmed that the increase in IFN-gamma production due to L. johnsonii stimulation was mainly due to T and B cells among splenocytes. Treating dendritic cells (DCs) with L. johnsonii bacterin at concentrations of 10 6 and 10 7 cfu/ ml significantly increased tumor necrosis factor-alpha, a pro-inflammatory cytokine, and interleukin-12, a cell-mediated immunity cytokine. Additionally, the expression of surface markers increased. Allogeneic mixed lymphocyte reactions showed that L. johnsonii reduced the antigen-presenting ability of DCs. In cocultures of DCs and splenocytes, L. johnsonii decreased cellular metabolic activity and increased cell death. L. johnsonii upregulated the expression of programmed death ligand 1 on DCs. The findings of this study indicate that L. johnsonii bacterin has immunomodulatory and immunostimulatory effects. While L. johnsonii increased the expression of cytokines and surface markers of immune cells, it modulated DC-mediated immune response. Further studies are needed to determine the effects of L. johnsonii bacterin on DCs and related immune cells. 
		                        		
		                        		
		                        		
		                        	
8.The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats
Yoon-Jo LEE ; Ji-Hyeon OH ; Suyeon PARK ; Jongho CHOI ; Min-Ho HONG ; HaeYong KWEON ; Weon-Sik CHAE ; Xiangguo CHE ; Je-Yong CHOI ; Seong-Gon KIM
Tissue Engineering and Regenerative Medicine 2025;22(1):91-104
		                        		
		                        			 BACKGROUND:
		                        			Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives. 
		                        		
		                        			METHODS:
		                        			This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses. 
		                        		
		                        			RESULTS:
		                        			The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group.Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity. 
		                        		
		                        			CONCLUSION
		                        			These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients. 
		                        		
		                        		
		                        		
		                        	
9.Lactobacillus johnsonii JERA01 upregulates the production of Th1 cytokines and modulates dendritic cells-mediated immune response
The Korean Journal of Physiology and Pharmacology 2025;29(3):271-281
		                        		
		                        			
		                        			 Lactic acid bacteria are known to have various effects on the immune system. The type and extent of the effect differ, depending on the type of lactic acid bacteria. This study aimed to investigate the effects of Lactobacillus johnsonii bacterin on mouse-derived immune cells. Treating splenocytes with L. johnsonii bacterin slightly increased the metabolic activity. Additionally, the expression of the activation marker CD25 and production of the Th1-type inflammatory cytokine interferon (IFN)-gamma increased. We confirmed that the increase in IFN-gamma production due to L. johnsonii stimulation was mainly due to T and B cells among splenocytes. Treating dendritic cells (DCs) with L. johnsonii bacterin at concentrations of 10 6 and 10 7 cfu/ ml significantly increased tumor necrosis factor-alpha, a pro-inflammatory cytokine, and interleukin-12, a cell-mediated immunity cytokine. Additionally, the expression of surface markers increased. Allogeneic mixed lymphocyte reactions showed that L. johnsonii reduced the antigen-presenting ability of DCs. In cocultures of DCs and splenocytes, L. johnsonii decreased cellular metabolic activity and increased cell death. L. johnsonii upregulated the expression of programmed death ligand 1 on DCs. The findings of this study indicate that L. johnsonii bacterin has immunomodulatory and immunostimulatory effects. While L. johnsonii increased the expression of cytokines and surface markers of immune cells, it modulated DC-mediated immune response. Further studies are needed to determine the effects of L. johnsonii bacterin on DCs and related immune cells. 
		                        		
		                        		
		                        		
		                        	
10.The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats
Yoon-Jo LEE ; Ji-Hyeon OH ; Suyeon PARK ; Jongho CHOI ; Min-Ho HONG ; HaeYong KWEON ; Weon-Sik CHAE ; Xiangguo CHE ; Je-Yong CHOI ; Seong-Gon KIM
Tissue Engineering and Regenerative Medicine 2025;22(1):91-104
		                        		
		                        			 BACKGROUND:
		                        			Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives. 
		                        		
		                        			METHODS:
		                        			This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses. 
		                        		
		                        			RESULTS:
		                        			The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group.Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity. 
		                        		
		                        			CONCLUSION
		                        			These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail