1.Prognostic Factors of Liposarcoma in Head and Neck
Shuo DING ; Zhigang HUANG ; Jugao FANG ; Yang ZHANG ; Lizhen HOU ; Wei GUO ; Gaofei YIN ; Qi ZHONG
Cancer Research on Prevention and Treatment 2025;52(1):31-35
Objective To explore the pathogenesis and prognostic factors of liposarcoma in the head and neck region, and simultaneously analyze the efficacy of different treatment regimens. Methods A retrospective analysis was performed on all patients with primary untreated head and neck liposarcoma who were diagnosed and underwent surgical treatment at our hospital from January 2008 to January 2024. All patients were monitored during follow-up, and their prognoses were analyzed using SPSS software. Results A total of 30 patients were included in the study. Liposarcoma accounted for up to 60% of the cases in the orbit, while the remaining liposarcomas were primarily located in various interspaces of the neck. Dedifferentiated liposarcoma was the most common type, comprising 33%, while myxoid pleomorphic liposarcoma was the rarest at 4%. The tumor pathological type (P<0.001) and Ki67 (P=0.014) significantly affected the tumor control rate. However, an analysis of disease-specific survival rates revealed no significant differences across various factors (all P>0.05). Conclusion The prognosis of head and neck liposarcoma is better compared to that of liposarcomas in other parts of the body. However, myxoid pleomorphic liposarcoma, pleomorphic fat sarcoma, and high Ki67 levels are indicators of poor prognosis. Additionally, postoperative adjuvant radiotherapy does not significantly enhance disease-specific survival rates.
2.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
3.Time-series association between heatwaves and emergency ambulance calls in Dezhou City, Shandong Province
Shuo CAO ; Mingxiao GUO ; Qi ZHAO ; Yanling WU ; Peijie WANG
Journal of Environmental and Occupational Medicine 2025;42(8):939-945
Background In the context of global climate change, heatwaves pose an increasing threat to human health. Emergency ambulance calls are an important outcome indicator of acute health response in populations during heatwave weather. However, studies on the association between emergency ambulance calls and heatwaves in China have primarily focused on the southern regions, and less attention is paid to the northern regions, which hinders a comprehensive assessment of acute health impact posed by extreme heat. Objective To quantify the association between heatwaves and emergency ambulance calls in Dezhou City, Shandong Province. Methods The data on daily records of emergency ambulance calls, meteorological factors, and air pollution from May to September of 2020 to 2022 in Dezhou City, Shandong Province were collected. Heatwaves were defined by combining thresholds at the 90th, 92.5th, 95th, and 97.5th percentiles (P90, P92.5, P95, and P97.5) of the year-round daily mean temperature and durations of ≥2, 3, or 4 consecutive days, respectively. A generalized additive model with a distributed lag nonlinear model was used to estimate the relative risk of emergency ambulance calls during heatwave days compared with non-heatwave days. Results During the study period, a total of
4.Exploration of Decision-Making Methods Based on Syndrome Differentiation by “Data-Knowledge” Dual-Driven Models: A Case Study of Gastric Precancerous State
Weichao XU ; Yanru DU ; Xiaomeng LANG ; Yingying LOU ; Wenwen JIA ; Xin KANG ; Shuo GUO ; Kun ZHANG ; Chunzhi SU ; Junbiao TIAN ; Xiaona WEI ; Qian YANG
Journal of Traditional Chinese Medicine 2024;65(2):154-158
Data analysis models may assist the transmission of traditional Chinese medicine (TCM) experience and clinical diagnosis and treatment, and the possibility of constructing a “data-knowledge” dual-drive model was explored by taking gastric precancerous state as an example. Data-driven is to make clinical decisions around data analysis, and its syndrome-differentiation decision-making research relies on hidden structural models and partially observable Markov decision-making processes to identify the etiology of diseases, syndrome elements, evolution of pathogenesis, and syndrome differentiation protocols; knowledge-driven is to make use of data and information to promote decision-making and action processes, and its syndrome-differentiation decision-making research relies on convolutional neural networks to improve the accuracy of local disease identification and syndrome differentiation. The “data-knowledge” dual-driven model can make up for the shortcomings of single-drive numerical simulation accuracy, and achieve a balance between local disease identification and macroscopic syndrome differentiation. On the basis of previous research, we explored the construction method of diagnostic assisted decision-making platform for gastric precancerous state, and believed that the diagnostic and decision-making ability of doctors can be extended through the assistance of machines and algorithms. Meanwhile, the related research methods were integrated and the core features of gastric precancerous state based on TCM syndrome differentiation and endoscopic pathology diagnosis and prediction were obtained, and the elements of endoscopic pathology recognition based on TCM syndrome differentiation were explored, so as to provide ideas for the in-depth research and innovative application of cutting-edge data analysis technology in the field of intelligent TCM syndrome differentiation.
5.Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism.
Jifeng LI ; Haolin GUO ; Ying DONG ; Shuo YUAN ; Xiaotong WEI ; Yuxin ZHANG ; Lu DONG ; Fei WANG ; Ting BAI ; Yong YANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):4-14
Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Liver Diseases/drug therapy*
;
Antioxidants
;
Polysaccharides/therapeutic use*
;
Medicine, Chinese Traditional
6.Characteristics of STAT Family Association with Breast Cancer and Intervention Effect of Traditional Chinese Medicine
Lin GUO ; Xiaoran WANG ; Sizhe LIU ; Yuanxin ZHANG ; Shuo TIAN ; Mingsan MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):225-233
As the pace of society increases and lifestyles change, the incidence and mortality rates of breast cancer continue to rise. Targeted therapies are now promising in the treatment of breast cancer, and a variety of protein targets have been identified to play an important role in the development of breast cancer. Among them, signal transducer and activator of transcription (STAT) proteins constitute a crucial group that serves as important targets for transducing cellular transcriptional information, which can regulate downstream cell proliferation, apoptosis, cell migration, invasion, angiogenic factors, etc. and then affect the progression of breast cancer. The STAT family is closely associated with the inflammatory response to tumors and plays a landmark role in tumor development as well as in diagnosis and prognosis. The "inflammation-cancer" transformation refers to the process in which the inflammatory microenvironment caused by uncontrolled inflammation promotes normal cells to become cancerous. According to the theory of Chinese medicine, "heat toxicity" in "cancer toxicity" corresponds to inflammation, which is closely related to tumor development. As a major link associated with the inflammatory response, the STAT family has a promising role in the development and treatment of a variety of tumors, but its relevance to breast cancer remains inadequately explored. Chinese medicine has been shown to have good efficacy in the prevention and treatment of breast cancer, and some current studies have shown that the active ingredients and compounds of Chinese medicine have certain intervention effects on breast cancer-related STAT proteins, but there has not been a systematic review. In order to better sort out and summarize the studies on the effects of Chinese herbal medicines based on the STAT family interventions in breast cancer, this paper reviewed the studies on Chinese herbal medicines acting on the STAT family in recent years, aiming to provide new ideas for clinical applications in breast cancer and to provide thoughts for the development of STAT protein-based drugs.
7.Study on neurological monitoring with cortical electrodes in thyroidectomy
Xiaoyan WANG ; Qi ZHONG ; Hongzhi MA ; Wei GUO ; Shuo DING ; Yanming ZHAO ; Yurong HE ; Qijia LI
Journal of Xi'an Jiaotong University(Medical Sciences) 2024;45(1):94-99
Objective To compare the synergies between the transcutaneous needle electrodes and the ETT surface electrodes used for neurological surveillance in thyroidology,and explore how to identify and protect recurrent laryngeal nerve and vagus nerve when the patient is not suitable for oral plug or surface electrodes are failure.Methods To collect and analyze the clinical data of 32 patients undergoing surgical treatment for thyroid disease,a total of 40 neurons of the recurrent laryngeal nerves and vagus nerves were monitored,and the amplitude and latency were recorded using ETT surface electrodes and transcutaneous needle electrodes for nerve monitoring,respectively.SPSS 26.0 software was used for statistical analysis,paired t-tests were used to analyze and compare the latency periods,and the rank sum test was used to analyze whether there is a difference in the amplitude obtained from stimulation of transcutaneous needle electrodes and ETT surface electrodes.Results When the transcutaneous needle electrodes were used in thyroid surgery,we identified all the nerves,obtained two-phase electrical signals similar to the latency and amplitude of the ETT surface electrodes,and could effectively identify the recurrent laryngeal nerve and vagus nerve[(3.22±0.50)ms vs.(3.85±1.00)ms,P<0.05]through the incapacity period,with no obvious difference in the monitoring effect from the ETT surface electrodes[(3.04±0.58)ms vs.(3.89±1.07)ms,P<0.05].At the same time,the visualization and safety of transcutaneous needle electrodes were higher,with great advantages.Conclusion Transcutaneous needle electrodes can effectively assist in identifying and protecting the recurrent laryngeal nerve and vagus nerve,and thus are an important supplement to ETT surface electrodes.
8.Exploration on the Application of Partially Nested Design in Effectiveness Assessment of Different Treatment for the Same Disease in TCM and Its Methodology
Shuo FENG ; Jizheng MA ; Yufeng GUO ; Jian CAO ; Jing HU ; Xing LIAO
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(4):26-30
Objective To introduce a partially nested design based on the characteristics of TCM in treating the same disease with different treatments and syndrome differentiation and treatment.Methods Partially nested design was used for standardized treatment of complex interventions.The TCM group was divided into multiple subsets according to"syndrome type-treatment method-prescription"(with nested structure),while the control group was treated with standardized Western medicine(without nested structure);taking a case study of"different treatments for the same disease"data for ulcerative colitis,this design type was applied and analyzed using a multi-level model.Results The partially nested design was consistent with the feature of TCM of"different treatments for the same disease"and met the methodological requirements for evidence-based evaluation.Multilevel models allowed analyses with this type of data.Conclusion The use of partially nested design enables the evaluation of the comprehensive effectiveness of"different treatments for the same disease",which can provide a methodological reference for the assessment of clinical effectiveness of TCM.
9.Preparation and characterization of 3D plant-based scaffold based on decellularization method in liver tissue engineering
Jingjing HU ; Songlin HE ; Daxu ZHANG ; Shuo ZHAO ; Xiaonan SHI ; Weilong LI ; Shujun YE ; Jingyi WANG ; Quanyi GUO ; Li YAN
Chinese Journal of Tissue Engineering Research 2024;28(29):4645-4651
BACKGROUND:Tissue engineering has brought new hope to the clinical challenge of liver failure,and the preparation of plant-derived decellularized fiber scaffolds holds significant importance in liver tissue engineering. OBJECTIVE:To prepare apple tissue decellularized scaffold material by using fresh apple slices and a solution of sodium dodecyl sulfate,and assess its biocompatibility. METHODS:Fresh apples were subjected to decellularization using phosphate buffer saline and sodium dodecyl sulfate solution,separately.Afterwards,the decellularized apple tissues and apple decellularized scaffold materials were decontaminated with phosphate buffer saline.Subsequently,scanning electron microscopy was used to assess the effectiveness of decellularization of the apple materials.Adipose-derived mesenchymal stem cells were extracted from the inguinal fat BALB/C of mice,and their expression of stem cell-related markers(CD45,CD34,CD73,CD90,and CD105)was identified through flow cytometry.The cells were then divided into a scaffold-free control group and a scaffold group.Equal amounts of adipose-derived mesenchymal stem cells were seeded onto both groups.The biocompatibility of the decellularized scaffold with adipose-derived mesenchymal stem cells was evaluated using CCK-8 assay,hematoxylin-eosin staining,and phalloidine staining.Cell adhesion and growth on the scaffold were observed under light microscopy and scanning electron microscopy.Furthermore,the scaffold was subdivided into the non-induced group and the hepatogenic-induced group.Adipose-derived mesenchymal stem cells were cultured on the decellularized apple scaffold,and they were cultured for 14 days in regular culture medium or hepatogenic induction medium for comparison.Immunofluorescent staining using liver cell markers,including albumin,cytokeratin 18,and CYP1A1,was performed.Enzyme-linked immunosorbent assay was used to detect the secretion of alpha fetoprotein and albumin.Additionally,scanning electron microscopy was employed to observe the morphology of the induced cells on the scaffold,verifying the expression of liver cell-related genes on the decellularized scaffold material.Finally,the cobalt-60 irradiated and sterilized decellularized apple scaffolds were transplanted onto the surface of mouse liver and the degradation of the scaffold was observed by gross observation and hematoxylin-eosin staining after 28 days. RESULTS AND CONCLUSION:(1)The scanning electron microscopy results revealed that the decellularized apple scaffold material retained a porous structure of approximately 100 μm in size,with no residual cells observed.(2)Through flow cytometry analysis,the cultured cells were identified as adipose-derived mesenchymal stem cells.(3)CCK-8 assay results demonstrated that the prepared decellularized apple tissue scaffold material exhibited no cytotoxicity.Hematoxylin-eosin staining and phalloidine staining showed that adipose-derived mesenchymal stem cells were capable of adhering and proliferating on the decellularized apple tissue scaffold.(4)The results obtained from immunofluorescence staining and enzyme-linked immunosorbent assay revealed that adipose-derived mesenchymal stem cells cultured on the decellularized apple scaffolds exhibited elevated expression of liver-specific proteins,including albumin,alpha-fetoprotein,cytokeratin 18,and CYP1A1.These results suggested that they were induced differentiation into hepatocyte-like cells possessing functional characteristics of liver cells.(5)The decellularized apple scaffold implanted at 7 days has integrated with the liver,with partial degradation of the scaffold observed.By 28 days,the decellularized apple scaffold has completely degraded and has been replaced by newly-formed tissue.(6)The results indicate that the decellularized scaffold material derived from apple tissue demonstrates favorable biocompatibility,promoting the proliferation,adhesion,and hepatic differentiation of adipose-derived mesenchymal stem cells.
10.Platinum-Based Nanoplatforms in the Application of Medical Multimodal Imaging
Heying LI ; Jingpi GAO ; Pengshan GUO ; Qinghao HE ; Manping LIN ; Shuo GU ; Jinghua LI
Chinese Journal of Medical Imaging 2024;32(1):105-108,112
Platinum-based nanoplatforms can enhance the absorption of X-ray due to the presence of high atomic number element of platinum and are applied to computed tomography imaging.Meanwhile,platinum-based nanomaterials have good near-infrared light absorption properties and photothermal conversion efficiency,which make them capable of photothermal imaging and photoacoustic imaging.In addition,by reducing transverse and longitudinal relaxation time,platinum-based nanoplatforms can mediate MRI imaging.In this paper,we report a multimodal imaging system based on platinum-based nanoplatforms for guiding the development of cancer treatment and diagnosis platform and medical application research,and also summarize the prospects of multimodal imaging technology in cancer diagnosis and treatment,report the research progress of platinum-based nanoplatforms in improving the contrast of medical images and enhancing cancer treatment.

Result Analysis
Print
Save
E-mail