1.Active Components of Salviae Miltiorrhizae Radix et Rhizoma and Its Compound in Treatment of Nervous System Diseases: A Review
Weining SONG ; Shuxiang ZHANG ; Fang LU ; Zhize WANG ; Ruyang CHENG ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):303-313
Nervous system diseases, also known as neuropathies, encompass a wide range of conditions, primarily including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and other neurodegenerative disorders, as well as depression, subarachnoid hemorrhage, cerebral ischemia-reperfusion injury, vascular dementia, and other neurological diseases. These diseases pose serious threats to the health and lives of patients, bringing heavy burdens to society and families. The pathogenesis of nervous system diseases is highly complex, involving mechanisms such as neuroinflammation, oxidative stress, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, brain-derived neurotrophic factor deficiency, reduced cholinergic activity, axonal injury, and demyelination. In recent years, the incidence and mortality of nervous system diseases have been rising annually. Currently, western medicine primarily focuses on symptomatic treatment, often accompanied by many adverse reactions, including lethargy, excessive sedation, dizziness, headaches, tachycardia, liver function damage, metabolic disorders, and incomplete recovery after surgery. As a traditional Chinese medicine, Salviae Miltiorrhizae Radix et Rhizoma has effects such as promoting blood circulation, removing blood stasis, cooling the blood, clearing the heart, nourishing the blood, and calming the nerves. It can play a role in the treatment and protection against nervous system diseases through multiple targets, pathways, and mechanisms. Studies have found that the water-soluble phenolic acids and fat-soluble diterpenoid quinones in Salviae Miltiorrhizae Radix et Rhizoma are the main active ingredients for the treatment of nervous system diseases. This paper summarized the effects of the active components and compounds of Salviae Miltiorrhizae Radix et Rhizoma on nervous system diseases over the past ten years, aiming to provide a theoretical basis and research ideas for the development and application of active components and compounds of Salviae Miltiorrhizae Radix et Rhizoma in nervous system diseases.
2.Current Status and Prospects of Research on the Potential Neurobiological Mechanisms of Acupuncture in the Treatment of Tobacco Dependence
Shumin CHEN ; Jin CHANG ; Chaoren TAN ; Hao ZHU ; Jinsheng YANG ; Zhao LIU ; Yingying WANG
Journal of Traditional Chinese Medicine 2025;66(4):421-426
This paper comprehensively discusses on the potential neurobiological mechanisms of acupuncture in the treatment of tobacco dependence, focusing on three important aspects, including acupuncture's regulation of tobacco dependence behavior, effects of acupuncture on withdrawal syndrome, and the role of acupuncture in preventing relapse. It is found that acupuncture can inhibit drug-seeking behavior by regulating the reward pathway and related neurons, such as dopamine, thus modulating tobacco dependence behavior. It also alleviates withdrawal symptoms by improving the oral environment of smokers and reducing negative emotions after quitting. Furthermore, acupuncture can prevent relapse by decreasing brain network activity related to smoking cravings and improving cognitive brain functions like addiction memory. Currently, research on the specific neurobiological mechanism of acupuncture in treating tobacco dependence and the involved neural circuits is limited. Future research directions are proposed, including the evaluation of clinical effects, exploration of specific therapeutic mechanisms, investigation of brain pathology, and strengthening the exploration of brain functions. Additionally, combining modern technologies to clarify the neural circuits involved in acupuncture intervention will provide a basis for acupuncture treatment of tobacco addiction.
3.DIA Proteomics Reveals Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating α-Syn Transgenic Parkinson's Disease in Mice
Qi ZHENG ; Yi LU ; Donghua YU ; Liangyou ZHAO ; Chunsheng LIN ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):40-50
ObjectiveTo investigate the mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis extract (ASH) in treating Parkinson's disease (PD) in mice by Data-Independent Acquisition (DIA) proteomics. MethodsThe α-Synuclein (α-Syn) transgenic PD mice were selected as suitable models for PD, and they were randomly assigned into PD, ASH (61.25 mg·kg-1), and Madopar (97.5 mg·kg-1) groups. Male C57BL/6 mice of the same age were selected as the control group, with eight mice in each group. Mice were administrated with corresponding drugs by gavage once a day for 20 days. The pole climbing time and the number of autonomic activities were recorded to evaluate the exercise ability of mice. Hematoxylin-eosin staining was employed to observe neuronal changes in the substantia nigra of PD mice. Immunohistochemistry (IHC) was employed to measure the tyrosine hydroxylase (TH) activity in the substantia nigra and assess the areal density of α-Syn in the striatum. DIA proteomics was used to compare protein expression in the substantia nigra between groups. IHC was utilized to validate key differentially expressed proteins, including Lactotransferrin, Notch2, Ndrg2, and TMEM 166. The cell counting kit-8 (CCK-8) method was used to investigate the effect of ASH on the viability of PD cells with overexpression of α-Syn. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the protein and mRNA levels of Lactotransferrin, Notch2, Ndrg2, and TMEM 166 in PD cells. ResultsCompared with the control group, the model group showed prolonged pole climbing time, diminished coordination ability, reduced autonomic activities (P<0.01), and reduced swelling neurons. Compared with the model group, ASH and Madopar reduced the climbing time, increased autonomic activities (P<0.01), and ameliorated neuronal damage. Compared with the control group, the model group showed a decrease in TH activity in the substantia nigra and an increase in α-Syn accumulation in the striatum (P<0.01). Compared with the model group, the ASH group showed an increase in TH activity and a reduction in α-Syn accumulation (P<0.05). DIA proteomics revealed a total of 464 differentially expressed proteins in the model group compared with the control group, with 323 proteins being up-regulated and 141 down-regulated. A total of 262 differentially expressed proteins were screened in the ASH group compared with the model group, including 85 proteins being up-regulated and 177 down-regulated. Kyoto encylopedia of genes and genomes (KEGG) pathway analysis indicated that ASH primarily regulated the Notch signaling pathway. The model group showed up-regulation in protein levels of Notch2, Ndrg2, and TMEM 166 and down-regulation in the protein level of Lactotransferrin compared with the control group (P<0.01). Compared with the model group, ASH down-regulated the protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.05) while up-regulating the protein level of Lactotransferrin (P<0.01). The IHC results corroborated the proteomics findings. The cell experiment results showed that compared with the control group, the modeling up-regulated the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while down-regulating the mRNA and protein levels of Lactotransferrin (P<0.01). Compared with the model group, ASH reduced the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while increasing the mRNA and protein levels of Lactotransferrin (P<0.05, P<0.01). ConclusionASH may Synergistically inhibit the Notch signaling pathway and mitigate neuronal damage by down-regulating the expression of Notch2 and Ndrg2. Additionally, by up-regulating the expression of Lactotransferrin and down-regulating the expression of TMEM166, ASH can address brain iron accumulation, intervene in ferroptosis, inhibit mitophagy, and mitigate reactive oxygen species damage, thereby protecting nerve cells and contributing to the treatment of PD.
4.The characteristics and mechanism of dynamic changes of different components in microenvironment in regulating the progression of liver fibrosis
Huilan ZHAO ; Zongxu LIU ; Shumin LI ; Zhifeng WANG ; Minghui LIU ; Qian SHENG ; Kunbin KE ; Xinan SHI
Journal of Clinical Hepatology 2025;41(4):755-760
The liver has diverse functions such as metabolism, detoxification, and immune defense, and the maintenance of hepatic microenvironment homeostasis is crucial for overall bodily health. The hepatic microenvironment consists of the components such as parenchymal cells, non-parenchymal cells, and non-cellular components. Chronic inflammatory responses induced by various etiological factors may promote the formation and progression of liver fibrosis. During the dynamic progression of liver fibrosis, from the early to advanced stages, various components within the hepatic microenvironment undergo a series of changes, which can promote the malignant progression of liver fibrosis. An in-depth exploration of the mechanisms underlying such changes in each component of the liver fibrosis microenvironment is of great significance for understanding the pathogenesis of liver fibrosis and discovering potential treatment strategies.
5.The mechanism of effective traditional Chinese medicine components and prescriptions in treatment of chronic pancreatitis by intervening against pancreatic stellate cells
Ruyang CHENG ; Weining SONG ; Xin JIANG ; Yehao WANG ; Lin LIU ; Fang LU ; Shumin LIU
Journal of Clinical Hepatology 2025;41(4):793-800
Chronic pancreatitis (CP) is a chronic disease characterized by recurrent inflammation and progressive damage to pancreatic tissue, and its deterioration may increase the risk of pancreatic cancer in patients with CP, which seriously threatens the health of patients with CP. In recent years, studies on the pathogenesis of CP have mostly focused on the activation of pancreatic stellate cells (PSCs) and its role in pancreatic fibrosis. This article elaborates on the mechanism of action of PSCs in CP, summarizes the current status of research on effective traditional Chinese medicine components and prescriptions for intervention of PSCs in the treatment of chronic CP, and proposes the future research directions for effective traditional Chinese medicine components and prescriptions, so as to provide a reference for the clinical treatment of CP patients in the future.
6.Total Saponins of Dioscoreae Nipponicae Rhizoma Alleviates Gouty Arthritis by Down-regulating COX-2-mediated M1 Macrophage Reprogramming
Lin HUANG ; Shumin LIU ; Huijuan SUN ; Geyu DENG ; Donghua YU ; Yu WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):200-207
ObjectiveTo explore the mechanism of total saponins of Dioscoreae Nipponicae Rhizoma (TSDN) in treating gouty arthritis (GA) by regulating cyclooxygenase-2 (COX-2)-mediated M1 macrophage reprogramming by in vivo and in vitro experiments. MethodsIn vivo experiment: 24 male SD rats were randomly allocated into blank, model (GA), TSDN, and celecoxib groups, with 6 rats in each group. After 7 days of administration, pathological changes in the ankle synovial tissue were observed via hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to quantify the mRNA levels of NOD-like receptor protein 3 (NLRP3) inflammasome, apoptosis-associated speck-like protein (ASC), Caspase-1, COX-2, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the synovial tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the serum levels of inducible nitric oxide synthase (iNOS), IL-1β, CD86, CD80, CD206, and arginase-1 (Arg-1). In vitro experiment: The GA model was established by lipopolysaccharide (LPS) + MSU induction, and the inhibitor concentration was screened by the methyl thiazolyl tetrazolium (MTT) assay. RAW264.7 cells were allocated into blank, model, TSDN, dexamethasone, COX-2 inhibitor (celecoxib), and TSDN + COX-2 inhibitor groups. The levels of iNOS, IL-1β, CD86, CD80, CD206, and Arg-1 in the cell supernatant of each group were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α in each group were determined by Real-time PCR and Western blot, respectively. ResultsIn vivo experiment: compared with the model group, TSDN reduced the mRNA levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α in the synovial tissue (P<0.05, P<0.01). ELISA results showed that TSDN lowered the serum levels of iNOS, IL-1β, CD86, and CD80 (P<0.01) while increasing the serum levels of CD206 and Arg-1 (P<0.01). In vitro experiment: compared with the model group, TSDN and inhibitor down-regulated the mRNA levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α and the protein levels of NLRP3 inflammasome, COX-2, cleaved IL-1β, and TNF-α (P<0.01). Compared with TSDN alone, TSDN + COX-2 inhibitor further reduced the mRNA and protein levels of the markers above (P<0.01). Compared with the model group, TSDN and COX-2 inhibitor decreased the levels of IL-1β, iNOS, CD80, and CD86 (P<0.01) and increased the levels of CD206 and Arg-1 (P<0.01) in cells. Compared with TSDN alone, TSDN + COX-2 inhibitor reduced IL-1β, iNOS, CD80, and CD86 levels (P<0.05, P<0.01) and elevated CD206 and Arg-1 levels (P<0.01) in cells. ConclusionTSDN can alleviate GA by downregulating COX-2-mediated M1 macrophage reprogramming and suppressing the inflammatory factors.
7.Total Saponins of Dioscoreae Nipponicae Rhizoma Alleviates Gouty Arthritis by Down-regulating COX-2-mediated M1 Macrophage Reprogramming
Lin HUANG ; Shumin LIU ; Huijuan SUN ; Geyu DENG ; Donghua YU ; Yu WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):200-207
ObjectiveTo explore the mechanism of total saponins of Dioscoreae Nipponicae Rhizoma (TSDN) in treating gouty arthritis (GA) by regulating cyclooxygenase-2 (COX-2)-mediated M1 macrophage reprogramming by in vivo and in vitro experiments. MethodsIn vivo experiment: 24 male SD rats were randomly allocated into blank, model (GA), TSDN, and celecoxib groups, with 6 rats in each group. After 7 days of administration, pathological changes in the ankle synovial tissue were observed via hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to quantify the mRNA levels of NOD-like receptor protein 3 (NLRP3) inflammasome, apoptosis-associated speck-like protein (ASC), Caspase-1, COX-2, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the synovial tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the serum levels of inducible nitric oxide synthase (iNOS), IL-1β, CD86, CD80, CD206, and arginase-1 (Arg-1). In vitro experiment: The GA model was established by lipopolysaccharide (LPS) + MSU induction, and the inhibitor concentration was screened by the methyl thiazolyl tetrazolium (MTT) assay. RAW264.7 cells were allocated into blank, model, TSDN, dexamethasone, COX-2 inhibitor (celecoxib), and TSDN + COX-2 inhibitor groups. The levels of iNOS, IL-1β, CD86, CD80, CD206, and Arg-1 in the cell supernatant of each group were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α in each group were determined by Real-time PCR and Western blot, respectively. ResultsIn vivo experiment: compared with the model group, TSDN reduced the mRNA levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α in the synovial tissue (P<0.05, P<0.01). ELISA results showed that TSDN lowered the serum levels of iNOS, IL-1β, CD86, and CD80 (P<0.01) while increasing the serum levels of CD206 and Arg-1 (P<0.01). In vitro experiment: compared with the model group, TSDN and inhibitor down-regulated the mRNA levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α and the protein levels of NLRP3 inflammasome, COX-2, cleaved IL-1β, and TNF-α (P<0.01). Compared with TSDN alone, TSDN + COX-2 inhibitor further reduced the mRNA and protein levels of the markers above (P<0.01). Compared with the model group, TSDN and COX-2 inhibitor decreased the levels of IL-1β, iNOS, CD80, and CD86 (P<0.01) and increased the levels of CD206 and Arg-1 (P<0.01) in cells. Compared with TSDN alone, TSDN + COX-2 inhibitor reduced IL-1β, iNOS, CD80, and CD86 levels (P<0.05, P<0.01) and elevated CD206 and Arg-1 levels (P<0.01) in cells. ConclusionTSDN can alleviate GA by downregulating COX-2-mediated M1 macrophage reprogramming and suppressing the inflammatory factors.
8.Mechanism of Huangqi Chifengtang in Treating Atherosclerosis Based on 16S rRNA Sequencing and Metabolomics
Yuqin LIANG ; Jiaqi FU ; Yunhe SHI ; Fang LU ; Donghua YU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):94-103
ObjectiveTo investigate the mechanism of action of Huangqi Chifengtang (HQCFT) on rats with atherosclerosis (AS) by regulating the gut microbiota and their metabolites. MethodsA rat model of AS was induced through high-fat diet feeding and vitamin D3 injection, and the modeling lasted for 12 weeks. Fifty eight-week-old male SD rats were randomly divided into five groups: A blank group, a model group, a group receiving a low dose of HQCFT at 1.53 g·kg-1 (HQCFT-L group), a group receiving a high dose of HQCFT at 3.06 g·kg-1 (HQCFT-H group), and a group receiving atorvastatin calcium tablets at 1.8 mg·kg-1 (Ato group), with 10 rats in each group. Oral gavage administration started on the day after model establishment, once daily for four weeks. The efficacy of HQCFT was verified using aortic hematoxylin-eosin (HE) staining and determination of lipid levels and hemorrheology. The real-time polymerase chain reaction (Real-time PCR) was used for detecting inflammatory factor levels in the aorta, high-throughput sequencing for analyzing the gut microbiota composition in intestinal contents, targeted metabolomics for detecting short-chain fatty acid (SCFA) levels, and non-targeted metabolomics for identifying metabolomic profiles of intestinal contents. ResultsCompared with that in the blank group, the aortic tissue of rats in the model group showed significant AS lesions, including endothelial damage, inflammatory infiltration, and formation of fibrous plaques and calcified foci. Moreover, serum triacylglycerol (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels were significantly elevated (P<0.05), while high-density lipoprotein cholesterol (HDL-C) levels were significantly reduced (P<0.05). Significant increases were observed in whole blood viscosity, plasma viscosity, and the mRNA expression levels of NOD-like receptor pyrin domain containing 3 (NLRP3), Caspase-1, interleukin (IL)-β, IL-6, and tumor necrosis factor-α (TNF-α) in aortic tissue (P<0.05). Additionally, gut microbiota composition, SCFA levels, and metabolomic profiles were significantly altered. Compared with those in the model group, serum TC, TG, and LDL-C levels, as well as the whole blood viscosity and plasma viscosity, were significantly reduced in all groups treated with HQCFT (P<0.05). Significant decreases were observed in NLRP3 mRNA expression levels in all groups treated with HQCFT, Caspase-1, IL-β, and IL-6 mRNA expression levels in the HQCFT-H group, and TNF-α mRNA expression levels in the HQCFT-L group (P<0.05). HQCFT reversed the increase in the F/B ratio and dialled back the decrease in the relative abundance of Blautia and the increase in that of Desulfovibrio. HQCFT promoted the production of acetic acid, valeric acid, and propionic acid. Non-targeted metabolomics identified 39 differential metabolites, which were mainly enriched in metabolic pathways such as arachidonic acid metabolism and primary bile acid biosynthesis. ConclusionThe mechanism by which HQCFT ameliorates AS injury may be related to the improvement of dyslipidemia and body inflammatory responses by altering gut microbiota composition, promoting SCFA production, and regulating the levels of metabolites in intestinal contents.
9.Mechanism of Huangqi Chifengtang in Treating Atherosclerosis Based on 16S rRNA Sequencing and Metabolomics
Yuqin LIANG ; Jiaqi FU ; Yunhe SHI ; Fang LU ; Donghua YU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):94-103
ObjectiveTo investigate the mechanism of action of Huangqi Chifengtang (HQCFT) on rats with atherosclerosis (AS) by regulating the gut microbiota and their metabolites. MethodsA rat model of AS was induced through high-fat diet feeding and vitamin D3 injection, and the modeling lasted for 12 weeks. Fifty eight-week-old male SD rats were randomly divided into five groups: A blank group, a model group, a group receiving a low dose of HQCFT at 1.53 g·kg-1 (HQCFT-L group), a group receiving a high dose of HQCFT at 3.06 g·kg-1 (HQCFT-H group), and a group receiving atorvastatin calcium tablets at 1.8 mg·kg-1 (Ato group), with 10 rats in each group. Oral gavage administration started on the day after model establishment, once daily for four weeks. The efficacy of HQCFT was verified using aortic hematoxylin-eosin (HE) staining and determination of lipid levels and hemorrheology. The real-time polymerase chain reaction (Real-time PCR) was used for detecting inflammatory factor levels in the aorta, high-throughput sequencing for analyzing the gut microbiota composition in intestinal contents, targeted metabolomics for detecting short-chain fatty acid (SCFA) levels, and non-targeted metabolomics for identifying metabolomic profiles of intestinal contents. ResultsCompared with that in the blank group, the aortic tissue of rats in the model group showed significant AS lesions, including endothelial damage, inflammatory infiltration, and formation of fibrous plaques and calcified foci. Moreover, serum triacylglycerol (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels were significantly elevated (P<0.05), while high-density lipoprotein cholesterol (HDL-C) levels were significantly reduced (P<0.05). Significant increases were observed in whole blood viscosity, plasma viscosity, and the mRNA expression levels of NOD-like receptor pyrin domain containing 3 (NLRP3), Caspase-1, interleukin (IL)-β, IL-6, and tumor necrosis factor-α (TNF-α) in aortic tissue (P<0.05). Additionally, gut microbiota composition, SCFA levels, and metabolomic profiles were significantly altered. Compared with those in the model group, serum TC, TG, and LDL-C levels, as well as the whole blood viscosity and plasma viscosity, were significantly reduced in all groups treated with HQCFT (P<0.05). Significant decreases were observed in NLRP3 mRNA expression levels in all groups treated with HQCFT, Caspase-1, IL-β, and IL-6 mRNA expression levels in the HQCFT-H group, and TNF-α mRNA expression levels in the HQCFT-L group (P<0.05). HQCFT reversed the increase in the F/B ratio and dialled back the decrease in the relative abundance of Blautia and the increase in that of Desulfovibrio. HQCFT promoted the production of acetic acid, valeric acid, and propionic acid. Non-targeted metabolomics identified 39 differential metabolites, which were mainly enriched in metabolic pathways such as arachidonic acid metabolism and primary bile acid biosynthesis. ConclusionThe mechanism by which HQCFT ameliorates AS injury may be related to the improvement of dyslipidemia and body inflammatory responses by altering gut microbiota composition, promoting SCFA production, and regulating the levels of metabolites in intestinal contents.
10.Study on mechanism of Chanbao zhichuang suppository in treating hemorrhoids based on network pharmacology and metabolomics
Chunfeng GUO ; Xin JIANG ; Ruyang CHENG ; Shumin LIU ; Chunxiang XIE ; Fang LU
China Pharmacy 2025;36(13):1622-1628
OBJECTIVE To explore the mechanism of improvement effect of Chanbao zhichuang suppository (CBZCS) on hemorrhoids in rats through network pharmacology and metabolomics. METHODS A hemorrhoid model was established by subcutaneous injection of rhododendron oil to induce anal swelling. SD rats were divided into blank group (NC group, 0.32 g/kg vaseline), model group (Model group, 0.32 g/kg vaseline), CBZCS low-, medium-, and high-dose groups (CBZCS-L, CBZCS- M, CBZCS-H groups, with dosages of 0.16, 0.32, and 0.64 g/kg respectively), and Mayinglong musk hemorrhoids suppository group (Positive group, 0.32 g/kg), with 9 rats in each group. Anal administration was performed at 6, 12, 24, 48, and 72 hours after modeling. After the last administration, the pathological changes of the anal tissues in rats were observed, and the serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in rats were detected. Differential metabolite analysis and enrichment analysis were conducted by metabolomics methods, and the target proteins of CBZCS in treating hemorrhoids were obtained by network pharmacology. The core metabolic pathways were screened by interaction and enrichment analysis of differential metabolites and proteins, and the core proteins were experimentally verified. RESULTS Compared with the NC group, the anal tissues of the Model group showed obvious lesions, and the levels of IL-6 and TNF- α in the serum were significantly increased (P<0.05); compared with the Model group, the pathological damage of the anal tissues in the treatment groups was alleviated to varying degrees, and serum levels of IL-6 in CBZCS-H group, CBZCS-M group, and Positive group as well as serum levels of TNF-α in CBZCS-H group were significantly reduced (P<0.05). The metabolomics results showed that 34 differential metabolites were screened from the anal tissues of rats, and 22 of them showed a return after CBZCS administration. The differential metabolites mainly enriched in arachidonic acid metabolism, histidine metabolism, and glycerophospholipid metabolism. Through the network pharmacology, 138 intersection genes of CBZCS against hemorrhoids were determined. The analysis results showed that differential metabolites and target proteins were mainly enriched in the arachidonic acid metabolism pathway, and the regulation of this pathway might be related to cyclooxygenase-2 (COX-2), Myc proto-oncogene protein (c-MYC), cytochrome P450 1B1 (CYP1B1), interleukin-1β (IL-1β), and IL-6 protein expression. The experimental verification results showed that the expression levels of key proteins (COX-2, c-MYC, CYP1B1, IL-6, IL-1β) in the anal tissues of the Model group were significantly higher than those in the NC group (P<0.05), and the levels of the above proteins in the anal tissues of CBZCS-H group and Positive group were significantly lower than those in the Model group (P<0.05). CONCLUSIONS The mechanism of CBZCS in treating hemorrhoids may be to inhibit the expression of COX-2, c-MYC and CYP1B1 proteins, thereby inhibiting arachidonic acid metabolism and reducing the release of inflammatory factors IL-6 and IL-1β.

Result Analysis
Print
Save
E-mail