1.Effects of Tripterygium wilfordii multiglycoside on renal injury in rats with diabetic nephropathy
Chong ZHANG ; Chundong SONG ; Mo WANG ; Shuang LIANG ; Xiaoxiao GUO ; Hanhan ZHANG ; Peijia LI ; Ke SONG ; Chenchen CHEN
China Pharmacy 2025;36(7):815-819
		                        		
		                        			
		                        			OBJECTIVE To investigate the effects of Tripterygium wilfordii multiglycoside (TWM) on renal injury in diabetic nephropathy (DN) rats through tumor protein p53/microRNA-214 (miR-214)/UNC-51-like kinase 1 (ULK1) axis. METHODS Male SD rats were randomly divided into normal group (n=6) and modeling group (n=28); the modeling group was fed with high fat and high glucose plus intraperitoneal injection of streptozotocin to establish DN model. The modeled rats were randomly divided into model group, valsartan group [8.33 mg/(kg·d)] and TWM group[6.25 mg/(kg·d)], with 8 rats in each group. Rats in each group were gavaged with the corresponding medication or normal saline, once a day, for 6 consecutive weeks. After the last medication, liver and renal function indexes [24 h urinary total protein (24 h-UTP), blood urea nitrogen (BUN), serum creatinine (SCr), albumin (ALB), alanine transaminase (ALT)], blood lipid indexes (triglycerides, total cholesterol) and blood glucose index (fasting blood glucose) in urine/blood sample of rats were detected in each group. Renal pathologic change was observed, protein and mRNA expressions of p53, ULK1, Beclin-1 and microtubule-associated protein 1 light chain 3 (LC3), and expression of miR-214 in renal tissue were also determined. RESULTS Compared with the normal group, the renal tubular epithelium of rats in the model group showed obvious edema, cell swelling, accompanied by lymphocyte infiltration; the levels of 24h-UTP, BUN, SCr, ALT and glycolipid indexes, the expressions of p53 protein and mRNA, as well as the expression of miR-214 in rats in the model group and administration groups were significantly increased or up-regulated, while ALB level, LC3-Ⅱ/LC3-Ⅰ, the expressions of LC3 mRNA, the expressions of ULK1, Beclin-1 protein and mRNA were significantly decreased or down-regulated (P<0.01). Compared with the model group, the histopathological damage of the kidney in rats was improved in administration groups; the levels of 24 h-UTP, BUN, SCr, ALT and glycolipid indexes, the expressions of p53 protein and mRNA, as well as the expression of miR-214 were all significantly decreased or down-regulated, while ALB level, LC3-Ⅱ/LC3-Ⅰ, the expressions of LC3 mRNA, the expressions of ULK1 and Beclin-1 protein and mRNA were significantly increased or up-regulated (P<0.01). CONCLUSIONS TG can alleviate renal damage in DN rats, and improve their liver and renal function, as well as glucose and lipid levels. These effects may be related to the regulation of the p53/miR-214/ULK1 axis and the restoration of cellular autophagy.
		                        		
		                        		
		                        		
		                        	
2.Baihe Wuyaotang Ameliorates NAFLD by Enhancing mTOR-mediated Liver Autophagy
Rui WANG ; Tiantian BAN ; Lihui XUE ; Xinyi FENG ; Jiyuan GUO ; Jiaqi LI ; Shenghe JIANG ; Xiaolei HAN ; Baofeng HU ; Wenli ZHANG ; Naijun WU ; Shuang LI ; Yajuan QI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):66-77
		                        		
		                        			
		                        			ObjectiveTo investigate the therapeutic effect of Baihe Wuyaotang (BWT) on non-alcoholic fatty liver disease (NAFLD) and elucidate its underlying mechanism. MethodC57BL/6J mice were randomly assigned to six groups: normal control, model, positive drug (pioglitazone hydrochloride 1.95×10-3 g·kg-1), and low-, medium-, and high-dose BWT (1.3,2.5 and 5.1 g·kg-1). Following a 12-week high-fat diet (HFD) inducement, the mice underwent six weeks of therapeutic intervention with twice-daily drug administration. Body weight was monitored weekly throughout the treatment period. At the fifth week, glucose tolerance (GTT) and insulin tolerance (ITT) tests were conducted. Subsequently, the mice were euthanized for the collection of liver tissue and serum, and the subcutaneous adipose tissue (iWAT) and epididymal adipose tissue (eWAT) were weighed. Serum levels of total triglycerides (TG) and liver function indicators,such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), were determined. Histological examinations, including oil red O staining, hematoxylin-eosin (HE) staining, Masson staining, and transmission electron microscopy, were performed to evaluate hepatic lipid deposition, pathological morphology, and ultrastructural changes, respectively. Meanwhile, Western blot and real-time quantitative polymerase chain reaction (Real-time PCR) were employed to analyze alterations, at both gene and protein levels, the insulin signaling pathway molecules, including insulin receptor substrate 1/2/protein kinase B/forkhead box gene O1 (IRS1/2/Akt/FoxO1), glycogen synthesis enzymes phosphoenolpyruvate carboxy kinase (Pepck) and glucose-6-phosphatase (G6Pase), lipid metabolism-related genes stearoyl-coA desaturase-1 (SCD-1) and carnitine palmitoyltransferase-1 (CPT-1), fibrosis-associated molecules α-smooth muscle actin (α-SMA), type Ⅰ collagen (CollagenⅠ), and the fibrosis canonical signaling pathway transforming growth factor-β1/drosophila mothers against decapentaplegic protein2/3(TGF-β1/p-Smad/Smad2/3), inflammatory factors such as interleukin(IL)-6, IL-8, IL-11, and IL-1β, autophagy markers LC3B Ⅱ/Ⅰ and p62/SQSTM1, and the expression of mammalian target of rapamycin (mTOR). ResultCompared with the model group, BWT reduced the body weight and liver weight of NAFLD mice(P<0.05, P<0.01), inhibited liver lipid accumulation, and reduced the weight of white fat: it reduced the weight of eWAT and iWAT(P<0.05, P<0.01) as well as the serum TG content(P<0.05, P<0.01). BWT improved the liver function as reflected by the reduced ALT and AST content(P<0.05, P<0.01). It improved liver insulin resistance by upregulating IRS2, p-Akt/Akt, p-FoxO1/FoxO1 expressions(P<0.05). Besides, it improved glucose and lipid metabolism disorders: it reduced fasting blood glucose and postprandial blood glucose(P<0.05, P<0.01), improved GTT and ITT(P<0.05, P<0.01), reduced the expression of Pepck, G6Pase, and SCD-1(P<0.01), and increased the expression of CPT-1(P<0.01). The expressions of α-SMA, Collagen1, and TGF-β1 proteins were down-regulated(P<0.05, P<0.01), while the expression of p-Smad/Smad2/3 was downregulated(P<0.05), suggesting BWT reduced liver fibrosis. BWT inhibited inflammation-related factors as it reduced the gene expression of IL-6, IL-8, IL-11 and IL-1β(P<0.01) and it enhanced autophagy by upregulating LC3B Ⅱ/Ⅰ expression(P<0.05)while downregulating the expression of p62/SQSTM1 and mTOR(P<0.05). ConclusionBWT ameliorates NAFLD by multifaceted improvements, including improving IR and glucose and lipid metabolism, anti-inflammation, anti-fibrosis, and enhancing autophagy. In particular, BWT may enhance liver autophagy by inhibiting the mTOR-mediated signaling pathway. 
		                        		
		                        		
		                        		
		                        	
3.Analysis of Inhibitory Effect of Berberine Compounds on Acetylcholinesterase and Blood-brain Barrier Permeability
Fulu PAN ; Yang LIU ; Huining LIU ; Shuang YU ; Xueyan LI ; Xinyu WANG ; Dongying QI ; Xiaoyu CHAI ; Qianqian WANG ; Zirong YI ; Yanli PAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(9):116-124
		                        		
		                        			
		                        			ObjectiveTo examine the inhibitory effects of berberine compounds, including columbamine, on acetylcholinesterase from the perspectives of drug-target binding affinity and kinetics and explore the blood-brain barrier (BBB) permeability of these compounds in different multi-component backgrounds. MethodThe median inhibitory concentration (IC50) of acetylcholinesterase by berberine compounds including columbamine was measured using the Ellman-modified spectrophotometric method. The binding kinetic parameters (Koff) of these compounds with acetylcholinesterase were determined using the enzyme activity recovery method. A qualitative analysis of the ability of these components to penetrate the BBB and arrive at the brain tissue in diverse multi-component backgrounds (including medicinal herbs and compound formulas) was conducted using ultra performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). ResultBerberine compounds, including columbamine, exhibited strong inhibition of acetylcholinesterase, with IC50 values in the nanomolar range. Moreover, they displayed better drug-target binding kinetics characteristics (with smaller Koff values) than the positive control of donepezil hydrochloride (P<0.01), indicating a longer inhibition duration of acetylcholinesterase. Berberine components such as columbamine could penetrate the BBB to arrive at brain tissue in the form of a monomer, as well as in the multi-component backgrounds of Coptis and Phellodendri Chinensis Cortex medicinal extracts and the compound formula Huanglian Jiedutang. ConclusionThese berberine compounds such as columbamine exhibit a strong inhibitory effect on acetylcholinesterase and can arrive at brain tissue in multi-component backgrounds. In the level of pharmacological substance, this supports the clinical efficacy of compound Huanglian Jiedutang in improving Alzheimer's disease, providing data support for elucidating the pharmacological basis of compound Huanglian Jiedutang. 
		                        		
		                        		
		                        		
		                        	
4. Investigating the effect and mechanism of Sophorae Flavescentis Radix and Rhizoma Smilacis Glabrae combination in ameliorating psoriatic lesions
Xing-Kang WU ; Lu WANG ; Yang LI ; Yu-Shuang MA ; Xue-Mei QIN ; Xing-Kang WU ; Lu WANG ; Yang LI ; Yu-Shuang MA ; Xue-Mei QIN ; Xing-Kang WU
Chinese Pharmacological Bulletin 2024;40(1):171-180
		                        		
		                        			
		                        			 Aim In this study, a mouse model of psoriasis-like lesions induced by 62. 5 mg imiquimod was used to explore the effect and mechanism of Sophorae Flavescentis Radix and Rhizoma Smilacis Glabrae combination for the topical treatment of psoriasis. Methods Firstly, the topical administration of Sophorae Flavescentis Radix and Rhizoma Smilacis Glabrae combination for treating psoriasis in progressive and recurrent stages was evaluated by psoriatic mouse model and HE staining. Secondly, immunohistochemistry was used to study the regulatory effects of Sophorae Flavescentis Radix and Rhizoma Smilacis Glabrae combination on the pivotal pathological mechanism of psoriasis-the positive feedback loop between the abnormal proliferation of keratinocytes and skin immune microenvironment. Finally, metabolomics technology was used to explore whether Sophorae Flavescentis Radix and Rhizoma Smilacis Glabrae combination topically treat psoriasis by regulating inflammation-related metabolism and lipid metabolism pathways. Results The combination of Sophorae Flavescentis Radix and Rhizoma Smilacis Glabrae alleviated psoriasis-like lesions in mice. It effectively relieved the recurrence after the cure of psoriatic lesions in mice, and the efficacy is comparable to that of benweimod. The combination of Sophorae Flavescentis Radix and Rhizoma Smilacis Glabrae inhibited the proliferation of mouse epidermal keratinocytes and reduced the number of T cells in the skin. The potential molecular mechanism was that the combination of Sophorae Flavescentis Radix and Rhizoma Smilacis Glabrae regulated arachidonic acid metabolism, sphin- golipid metabolism, tryptophan metabolism and phenylalanine metabolism. Conclusions The combination of Sophora Flavescens Radix and Rhizoma Smilacis Glabrae can relieve psoriasis-like lesions in mice by inhibiting the proliferation of epidermal keratinocytes and reducing the number of T cells in the skin and regulating metabolism to intervene psoriasis recurrence. This study provides a potential topical drug of psoriasis for relieving psoriasis recurrence. 
		                        		
		                        		
		                        		
		                        	
5.Mechanism of Sanhuang Xiexintang in Protecting Stress Gastric Ulcer in Rats
Yilin ZHONG ; Ran XIE ; Jiameng LI ; Shuang LIU ; Junying LI ; Mengnan ZANG ; Xing LIU ; Jinsong LIU ; Feng SUI ; Pengqian WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):45-53
		                        		
		                        			
		                        			ObjectiveTo explore the molecular mechanism of Sanhuang Xiexintang (SHXXT) in protecting stress gastric ulcer (SGU) in rats through network pharmacology, molecular docking, and animal experiments. MethodThe active ingredients and corresponding targets in SHXXT were collected and screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Information Database (TCMID), Bioinformation Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM), and Swiss Target Prediction database. SGU-related targets were screened from the Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), GeneCards database, and PharmGKB database. Herbal-ingredient-target (H-C-T) network was constructed by using Cytoscape 3.9.1 software. Protein-protein interaction (PPI) of drug and disease intersection targets was analyzed by using the Protein Interaction Platform (STRING) database. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted through the Database for Annotation Visualization and Integrated Discovery (DAVID). The active ingredients and key targets were validated using AutodockVina 1.2.2 molecular docking software, and the experimental results were further validated through animal experiments. ResultThe 55 active ingredients were screened, and 255 potential target genes for SHXXT treatment of SGU were predicted. The PPI analysis showed that protein kinase B (Akt), phosphatase and tensin homolog deleted on chromosome ten (PTEN), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX-2) are the core targets of SHXXT for protecting SGU. GO and KEGG analyses showed that SHXXT may affect the development of SGU by regulating various biological processes such as the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and inflammatory processes. The molecular docking results showed that both the active ingredients and key targets had good binding ability. Animal experiments showed that compared with the blank group, the ulcer index (UI) of the model group was significantly increased (P<0.01), and the serum levels of TNF-α and IL-1β significantly increased (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly down-regulated (P<0.05). The phosphorylation levels of PI3K, Akt, and nuclear factor kappa-B (NF-κB) were significantly up-regulated (P<0.05). Compared with the model group, the UI of the treatment group was significantly reduced (P<0.01), and the serum levels of TNF-α and IL-1β were significantly reduced (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly up-regulated (P<0.01), and the phosphorylation levels of PI3K, Akt, and NF-κB were significantly downregulated (P<0.01). ConclusionThe application of network pharmacology prediction, molecular docking simulation, and animal experimental validation confirms that SHXXT regulates the PI3K/Akt/NF-κB signaling pathway to regulate the inflammatory response of rats and thus protects the gastric mucosa of SGU rats. 
		                        		
		                        		
		                        		
		                        	
6.Identification and expression analysis of TCP family members in tobacco (Nicotiana tabacum L.).
Shize WANG ; Yun LI ; Yucui HAN ; Shizhou YU ; Shuang WANG ; Yong LIU ; Xiaohu LIN
Chinese Journal of Biotechnology 2024;40(1):226-238
		                        		
		                        			
		                        			TCP family as plant specific transcription factor, plays an important role in different aspects of plant development. In order to screen TCP family members in tobacco, the homologous sequences of tobacco and Arabidopsis TCP family were identified by genome-wide homologous alignment. The physicochemical properties, phylogenetic relationships and cis-acting elements were analyzed by bioinformatics. The homologous genes of AtTCP3/AtTCP4 were screened, and RT-qPCR was used to detect the changes of gene expression upon 20% PEG6000 treatment. The results show that tobacco contains 63 TCP family members. Their amino acid sequence length ranged from 89 aa to 596 aa, and their protein hydropathicity grand average of hydropathicity (GRAVY) ranged from -1.147 to 0.125. The isoelectric point (pI) ranges from 4.42 to 9.94, the number of introns is 0 to 3, and the subcellular location is all located in the nucleus. The results of conserved domain and phylogenetic relationship analysis showed that the tobacco TCP family can be divided into PCF, CIN and CYC/TB1 subfamilies, and each subfamily has a stable sequence. The results of cis-acting elements in gene promoter region showed that TCP family genes contain low docile acting elements (LTR) and a variety of stress and metabolic regulation related elements (MYB, MYC). Analysis of gene expression patterns showed that AtTCP3/AtTCP4 homologous genes (NtTCP6, NtTCP28, NtTCP30, NtTCP33, NtTCP42, NtTCP57, NtTCP63) accounted for 20% PEG6000 treatment significantly up-regulated/down-regulated expression, and NtTCP30 and NtTCP57 genes were selected as candidate genes in response to drought. The results of this study analyzed the TCP family in the tobacco genome and provided candidate genes for the study of drought-resistance gene function and variety breeding in tobacco.
		                        		
		                        		
		                        		
		                        			Nicotiana/genetics*
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Plant Breeding
		                        			;
		                        		
		                        			Amino Acid Sequence
		                        			;
		                        		
		                        			Arabidopsis
		                        			;
		                        		
		                        			Polyethylene Glycols
		                        			
		                        		
		                        	
7.Autosomal recessive axonal neuropathy with neuromyotonia in a Tibetan family caused by HINT1 gene variation and literature review
Xifang RU ; Rong ZHAO ; Yanbin FAN ; Shuang WANG ; Yilin YE ; Beiyu XU ; Chunde LI ; Zhen HUANG ; Hui XIONG
Chinese Journal of Applied Clinical Pediatrics 2024;39(2):128-133
		                        		
		                        			
		                        			Objective:To summarize the characteristics of autosomal recessive axonal neuropathy with neuromyotonia (ARAN-NM) caused by HINT1 gene mutation. Methods:Retrospective case summary.Clinical data of 2 Tibetan siblings diagnosed with ARAN-NM in the Department of Pediatrics of Peking University First Hospital in August 2023 were retrospectively analyzed.A review of literature reporting relevant Chinese patients was conducted.Results:The proband and her elder brother were aged 13 and 19, respectively.Both developed abnormal gait at the age of 11, followed by varus, claudication, and weak thumb strength.The proband also had neuromyotonia.Physical examinations showed that the proband and her elder brother had decreased muscle strength of the extremities, mainly in the thumbs and distal ends of lower limbs.The distal muscles of the proband′s lower extremities and the muscles of both hands of the proband′s elder brother were atrophied.Both feet showed talipes equinovarus in the proband and her elder brother.The proband′s electromyography (EMG) showed peripheral nerve injuries (motor and sensory axonal involvement, especially in distal ends) and myotonic potentials.The trio-whole exon sequencing detected homozygous pathogenic variation in HINT1 gene in both the proband and her elder brother, who were diagnosed as ARAN-NM based on c. 169A>G (p.K57E). After the Carbamazepine treatment, the proband′s neuromyotonia, numbness and weakness were relieved.Both the proband and her elder brother underwent orthopaedic surgery and rehabilitation.Their foot deformities and gait were significantly improved.Two Chinese literatures (2 patients) and four English literatures (8 patients) were retrieved.Including the proband and her elder brother in this study, there were 12 ARAN-NM patients, 10 of whom had clinical data.The ages of onset and diagnosis were 2-16 (1 case unknown) and 13-33 years old, respectively.Myasthenia was present in 9 patients, especially in distal ends.Eight patients were complicated with neuromyotonia, nine patients with muscle atrophy, seven patients with foot deformity, and two patients with sensory disturbance.Creatine kinase(CK) was elevated in all 9 patients tested or CK.EMG showed neurogenic injuries in all patients and neuromyotonia discharge in six patients.Three patients were treated with Carbamazepine, and some symptoms were relieved.Missense/nonsense mutations were found in the 12 patients, and the high-frequency variation was c. 112T>C (p.C38R). Conclusions:ARAN-NM is a rare autosomal recessive neuromuscular disease caused by HINT1 gene mutation.There is no ethnic difference in clinical manifestations, mainly distal limb weakness with neuromyotonia.Carbamazepine can alleviate some symptoms, and orthopaedic surgery can improve foot deformity and gait.
		                        		
		                        		
		                        		
		                        	
8.miR-20a regulates pressure overload-induced cardiac hypertrophy
Teng SUN ; Yu HAN ; Shuang WANG ; Jialei LI ; Jimin CAO
Chinese Journal of Tissue Engineering Research 2024;28(7):1021-1028
		                        		
		                        			
		                        			BACKGROUND:Cardiac hypertrophy is an adaptive response of the heart to physiological and pathological stimuli such as pressure overload.It is of compensatory significance in the early stage,but if the stimulation continues,it can cause cardiomyopathy leading to heart failure.MicroRNAs are involved in the regulation of cardiac hypertrophy.However,the role of miR-20a in pressure overload-induced cardiac hypertrophy has not been reported. OBJECTIVE:To investigate the role of miR-20a in pressure overload-induced cardiac hypertrophy and the underlying mechanisms. METHODS:Transverse aortic constriction was used to induce cardiac hypertrophy in vivo and angiotensin Ⅱ was used to induce H9c2 cell models of cardiac hypertrophy in vitro.MiR-20a was overexpressed in vivo by intramyocardial injection of miR-20a overexpressing adenovirus and in vitro by transfecting miR-20a mimic into H9c2 cells.Cardiac hypertrophy was assessed by measuring heart weight/body weight ratio,cell surface area,and myocardial fibrosis.The expression levels of atrial natriuretic peptide,brain natriuretic peptide,β-myosin heavy chain and miR-20a were detected by real-time fluorescence quantitative PCR.Mitochondrial fission was detected by MitoTracker.The downstream target genes of miR-20a were predicted by RNAhybrid software. RESULTS AND CONCLUSION:(1)The expression level of miR-20a was significantly decreased in both hypertrophic cardiomyocytes and hearts(P<0.05).(2)At the animal level,overexpression of miR-20a significantly inhibited transverse aortic constriction-induced cardiac hypertrophy,including decreasing the upregulated expression level of hypertrophic marker genes(P<0.05),reduced the enlarged heart volume,reducing the increased heart weight/body weight ratio(P<0.01),reducing the increased myocardial cross-sectional area(P<0.05),and attenuating fibrosis(P<0.01).(3)At the cellular level,overexpression of miR-20a significantly inhibited angiotensin Ⅱ-induced cardiomyocyte hypertrophy,including decreasing the upregulated expression levels of atrial natriuretic peptide(P<0.05),brain natriuretic peptide(P<0.01)and β-myosin heavy chain(P<0.05),reducing the increased protein/DNA ratio(P<0.01),and suppressing the increased cell surface area(P<0.05).(4)Overexpression of miR-20a significantly inhibited angiotensin Ⅱ-induced mitochondrial fission(P<0.05).(5)The results of RNAhybrid software analysis showed that miR-20a and the mRNA 3'untranslated region of cAMP-dependent protein kinase inhibitor alpha were well complementary and the predicted binding sites were highly conserved.(6)In conclusion,miR-20a is significantly down-regulated in pressure overload-induced cardiac hypertrophy.Overexpression of miR-20a inhibits cardiac hypertrophy at both the cellular level and animal level and attenuates angiotensin Ⅱ-induced mitochondrial fission.
		                        		
		                        		
		                        		
		                        	
9.Effect of Xiaoxuming decoction on OGD/R-induced synaptic plasticity in HT22 cells
Manman WANG ; Rui LAN ; Yong ZHANG ; Xueqin FU ; Xuhuan ZOU ; Weiwei WANG ; Hongyu LI ; Chen TANG ; Shuang LIU
Chinese Journal of Pathophysiology 2024;40(1):126-133
		                        		
		                        			
		                        			AIM:To explore the protective effect of Xiaoxuming decoction(XXMD)on synaptic plasticity in the context of cerebral ischemia-reperfusion injury following ischemic stroke.METHODS:An oxygen-glucose depriva-tion/reoxygenation(OGD/R)model was employed in vitro using mouse hippocampal neurons(HT22 cells)to simulate ischemia-reperfusion injury.Cell viability was assessed using a CCK-8 assay to determine the optimal XXMD concentra-tion.The HT22 cells were divided into two groups:control and model(OGD/R).Cellular morphological changes were ob-served using an inverted microscope.The levels of IL-1β,IL-6 and TNF-α in the supernatant were quantified by ELISA.Ultrastructural changes were examined by transmission electron microscopy.Immunofluorescence staining was used to de-tect neuron markers NeuN and synaptic proteins NF200 and MAP2.The protein levels of NF200 and MAP2 were analyzed by Western blot.RESULTS:The highest cell survival rate occurred at an XXMD concentration of 100 mg/L(P<0.05).Compared with control group,the cells in model group exhibited round shape and shrinkage,mitochondrial swelling or vacuolization,and a marked decrease in survival rate.There were significant increases in IL-1β,IL-6 and TNF-α levels(P<0.05).Immunofluorescence intensity and protein levels of NeuN,NF200 and MAP2 were notably reduced(P<0.05).Treatment with XXMD improved cell morphology,ultrastructure and survival rate(P<0.05),and decreased in-flammatory factor levels(P<0.05).Compared with model group,the cells in OGD/R+XXMD group showed significantly increased immunofluorescence intensity and protein levels of NeuN,NF200 and MAP2(P<0.05).CONCLUSION:Xiaoxuming decoction may mitigate OGD/R-induced injury,potentially by inhibiting inflammatory responses and enhanc-ing synaptic plasticity.
		                        		
		                        		
		                        		
		                        	
10.Research progress of berberine in the field of neuroprotection in ischemic stroke
Hongyu LI ; Rui LAN ; Manman WANG ; Weiwei WANG ; Yong ZHANG ; Chen TANG ; Shuang LIU
Chinese Journal of Comparative Medicine 2024;34(2):129-136
		                        		
		                        			
		                        			Berberine is a natural isoquinoline alkaloid that was initially used as a broad-spectrum antibacterial agent in clinical treatment of enteritis,peptic ulcers,chronic gastritis,pneumonia,and other diseases.In recent years,in-depth study of the pharmacological effects of berberine has provided increasing evidence that berberine has neuroprotective effects on ischemic stroke.In this review,we introduce the effect of berberine on risk factors of ischemic stroke and discuss the neuroprotective effects of berberine on various mechanisms of ischemic stroke in detail to provide a reference for clinical and basic research in this field.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail