1.In vitro anti-tumor effects and mechanisms of a novel c-KIT inhibitor PN17-1 on gastrointestinal stromal tumor GIST-882 cells
Ji-wei SHEN ; Shuang WU ; Jun LI ; Yun-peng ZHOU ; Ye CHEN ; Ju LIU
Acta Pharmaceutica Sinica 2025;60(2):379-387
In recent years, gastrointestinal stromal tumors (GIST) have increased incidence and mortality, and most GIST is caused by the activation mutation of the c-KIT gene. Therefore, c-KIT has become a promising therapeutic target of GIST. At present, the drugs approved for the treatment of GIST including imatinib, sunitinib, regorafenib and ripretinib, are mostly prone to developing resistance and accompanied by various degrees of adverse reactions. Therefore, there is an urgent need to develop new c-KIT inhibitors to solve the problem of resistance. In this study, we investigated the anti-tumor effect of a novel c-KIT inhibitor PN17-1 on gastrointestinal stromal tumor GIST-882 cells
2.Forty years of construction and innovative development of scientific regulation system of traditional Chinese medicine in China.
Jun-Ning ZHAO ; Zhi-Shu TANG ; Hua HUA ; Rong SHAO ; Jiang-Yong YU ; Chang-Ming YANG ; Shuang-Fei CAI ; Quan-Mei SUN ; Dong-Ying LI
China Journal of Chinese Materia Medica 2025;50(13):3489-3505
Since the promulgation of the first Drug Administration Law of the People's Republic of China 40 years ago in 1984, China has undergone four main stages in the traditional Chinese medicine(TCM) regulation: the initial establishment of TCM regulation rules(1984-1997), the formation of a modern TCM regulatory system(1998-2014), the reform of the review and approval system for new TCM drugs(2015-2018), and the construction of a scientific regulation system for TCM(2019-2024). Over the past five years, a series of milestone achievements of TCM regulation in China have been achieved in the six aspects, including its strategic objectives and the establishment of a science-based regulatory system, the reform of the review and approval system for new TCM drugs, the optimization and improvement of the TCM standard system and its formation mechanism, comprehensive enhancement of regulatory capabilities for TCM safety, international harmonization of TCM regulation and its role in promoting innovation. Looking ahead, centered on advancing TCMRS to establish a sound regulatory framework tailored to the unique characteristics of TCM, TCM regulation will evolve into new reform patterns, advancing and extending across eight critical fronts, including the legal framework and policy architecture, the review and approval system for new TCM drugs, the quality standard and management system of TCM, the comprehensive quality & safety regulation and traceability system, the research and transformation system for TCMRS, AI-driven innovations in TCM regulation, the coordination between high-quality industrial development and high-level regulation, and the leadership in international cooperation and regulatory harmonization. In this way, a unique path for the development of modern TCM regulation with Chinese characteristics will be pioneered.
Humans
;
China
;
Drugs, Chinese Herbal/standards*
;
History, 20th Century
;
History, 21st Century
;
Medicine, Chinese Traditional/trends*
3.Clinical and genetic characteristics of osteopetrosis in children.
Min WANG ; Ao-Shuang JIANG ; Cheng-Lin ZHU ; Jie WANG ; Ya-Ping WANG ; Shan GAO ; Yan LI ; Tian-Ping CHEN ; Hong-Jun LIU ; Jian WANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):568-573
OBJECTIVES:
To study the clinical and genetic characteristics of osteopetrosis (OPT) in children.
METHODS:
A retrospective analysis was performed on the clinical data of 14 children with OPT. Whole-exome sequencing was used to detect pathogenic genes, and clinical phenotypes and genotypic features were summarized.
RESULTS:
Among the 14 children (10 males and 4 females), the median age at diagnosis was 8 months. Clinical manifestations included systemic osteosclerosis (14 cases, 100%), anemia (12 cases, 86%), infections (10 cases, 71%), thrombocytopenia (9 cases, 64%), hepatosplenomegaly (8 cases, 57%), and developmental delay (5 cases, 36%). Malignant osteopetrosis (MOP) cases had lower platelet counts, creatine kinase isoenzyme, and serum calcium levels, but higher white blood cell counts, lactate dehydrogenase, and alkaline phosphatase levels compared to non-MOP cases (P<0.05). Genetic testing identified 15 variants in 12 patients, including 8 variants in the CLCN7 gene (53%), 6 in the TCIRG1 gene (40%), and 1 in the TNFRSF11A gene (7%). Three novel CLCN7 variants were identified: c.2351G>C, c.1215-43C>T, and c.1534G>A. All four patients with TCIRG1 variants exhibited MOP clinical phenotypes. Of the seven patients with CLCN7 variants, 4 presented with intermediate OPT, 2 with benign OPT, and 1 with MOP.
CONCLUSIONS
Clinical phenotypes of OPT in children are heterogeneous, predominantly involving CLCN7 and TCIRG1 gene variants, with a correlation between clinical phenotypes and genotypes.
Humans
;
Osteopetrosis/genetics*
;
Male
;
Female
;
Infant
;
Child, Preschool
;
Retrospective Studies
;
Vacuolar Proton-Translocating ATPases/genetics*
;
Child
;
Chloride Channels/genetics*
;
Mutation
;
Receptor Activator of Nuclear Factor-kappa B
4.Molecular Pathogenic Mechanism Study of Two Cases of Inherited Dysfibrinogenemia.
Min WANG ; Tian-Ping CHEN ; Ao-Shuang JIANG ; Cheng-Lin ZHU ; Nan WEI ; Li-Juan ZHU ; Li-Jun QU ; Hong-Jun LIU
Journal of Experimental Hematology 2025;33(1):187-192
OBJECTIVE:
To analyze two families with inherited dysfibrinogenemia, and explore the molecular pathogenic mechanisms.
METHODS:
The coagulation indexes of the probands and their family members were detected. The FGA, FGB, and FGG exons and their flanking sequences were amplified by PCR, and the mutation sites were identified by sequencing. SIFT, PolyPhen2, LRT, ReVe, MutationTaster, phyloP, and phastCons bioinformatics software were used to predict the functional impact of the mutation sites. Protein structure and amino acid conservation analysis of the variant were conducted using PyMOL and Clustal X software.
RESULTS:
The thrombin time (TT) of the proband in family 1 was prolonged to 37.00 s, and Fg∶C decreased to 0.52 g/L. The TT of the proband in family 2 was 20.30 s, and Fg∶C was 1.00 g/L, which was lower than the normal range. Genetic analysis revealed that the proband in family 1 had a heterozygous mutation c.80T>C in FGA, resulting in the substitution of phenylalanine 27 with serine (Phe27Ser). The proband in family 2 had a heterozygous mutation c.1007T>A in FGG, resulting in the substitution of methionine 336 with lysine (Met336Lys). Bioinformatics software prediction analysis indicated that both mutations were deleterious variants. PyMOL mutation models revealed that the Aα chain mutation (Phe27Ser) in family 1 and γ chain mutation (Met336Lys) in family 2 resulted in alterations in spatial structure and reduced protein stability. Clustal X results showed that both Aα Phe27 and γMet336 were highly conserved across homologous species.
CONCLUSION
Heterozygous mutations of FGA gene c.80T>C and FGG gene c.1007T>A are both pathogenic variants, causing inherited dysfibrinogenemia.
Female
;
Humans
;
Male
;
Afibrinogenemia/genetics*
;
Fibrinogen/genetics*
;
Heterozygote
;
Mutation
;
Pedigree
5.Short-term effects of ambient ozone on pediatric pneumonia hospital admissions: a multi-city case-crossover study in China.
Huan WANG ; Huan-Ling ZENG ; Guo-Xing LI ; Shuang ZHOU ; Jin-Lang LYU ; Qin LI ; Guo-Shuang FENG ; Hai-Jun WANG
Environmental Health and Preventive Medicine 2025;30():75-75
BACKGROUND:
Children's respiratory health demonstrates particular sensitivity to air pollution. Existing evidence investigating the association between short-term ozone (O3) exposure and childhood pneumonia remains insufficient and inconsistent, especially in low- and middle-income countries (LMICs).
METHOD:
To provide more reliable and persuasive evidence, we implemented a multi-city, time-stratified case-crossover design with a large sample size, using data from seven representative children's hospitals across major geographical regions in China. To avoid the impact of the COVID-19 pandemic, individual-level medical records of inpatient children under 6 years of age diagnosed with pneumonia during 2016-2019 were collected. Conditional logistic regression models were fitted for each city, and city-specific estimates were pooled through a meta-analysis using a random-effects model.
RESULTS:
In total, the study included 137,470 pediatric pneumonia hospital admissions. The highest pooled estimate for O3 occurred at lag0-1, with a 10 µg/m3 increase in O3 associated with a 1.57% (95% CI: 0.67%-2.48%) higher risk of pediatric pneumonia hospital admissions. Stratified analyses indicated that the effects of O3 were robust across different sexes, age groups, and admission seasons. We also observed a statistically significant increase in risk associated with O3 concentrations exceeding the World Health Organization Air Quality Guidelines (WHO-AQGs).
CONCLUSIONS
This study revealed a significant positive association between O3 and pediatric pneumonia hospital admissions. Our findings substantially strengthen the evidence base for the adverse health impacts of O3, underscoring the importance of O3 pollution control and management in reducing the public health burden of pediatric pneumonia.
Humans
;
Ozone/analysis*
;
China/epidemiology*
;
Pneumonia/chemically induced*
;
Child, Preschool
;
Male
;
Female
;
Infant
;
Cross-Over Studies
;
Air Pollutants/analysis*
;
Hospitalization/statistics & numerical data*
;
Child
;
Cities/epidemiology*
;
Air Pollution/adverse effects*
;
Infant, Newborn
;
Environmental Exposure/adverse effects*
6.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
8.Mutual Relationship between Grip Strength and Cognitive Function in Chinese Middle-Aged and Elderly People over 10 Years: A Cross-Lagged Panel Analysis.
Jia Qi WANG ; Ye RUAN ; Yan Fei GUO ; Shuang Yuan SUN ; An Li JIANG ; Yu Jun DONG ; Yan SHI ; Fan WU
Biomedical and Environmental Sciences 2025;38(10):1308-1313
9.Application of CRISPR/Cas-based Electrochemical Biosensors for Tumor Detection
Shuang LI ; Zhi CHEN ; Yun-Xia HUANG ; Guo-Jun ZHAO ; Ting JIANG
Progress in Biochemistry and Biophysics 2024;51(8):1771-1787
Tumors represent one of the primary threats to human life, with the dissemination of malignant tumors being a leading cause of mortality among cancer patients. Early diagnosis of tumors can reliably predict their progression, significantly reducing mortality rates. Tumor markers, including circulating tumor cells, exosomes, proteins, circulating tumor DNA, miRNAs and so on, generated during the tumor development process, have emerged as effective approach for early tumor diagnosis. Several methods are currently employed to detect tumor markers, such as polymerase chain reaction, Northern blotting, next-generation sequencing, flow cytometry, and enzyme-linked immunosorbent assay. However, these methods often suffer from time-consuming process, high costs, low sensitivity, and the requirement for specialized personnel. Therefore, a new rapid, sensitive, and specific tumor detection method is urgently needed.The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, originating from the adaptive immune system of bacteria, has found extensive applications in gene editing and nucleic acid detection. Based on the structure and function of Cas proteins, the CRISPR/Cas system can be classified into two classes and six types. Class I systems consist of multiple Cas protein complexes, including types I, III, and IV, while Class II systems comprise single, multi-domain Cas proteins mediated by RNA, including types II (Cas9), V (Cas12), and VI (Cas13). Class II systems have been widely employed in the fields of biotechnology and nucleic acid diagnostics due to their efficient target binding and programmable RNA specificity. Currently, fluorescence method is the most common signal output technique in CRISPR/Cas-based biosensors. However, this method often requires the integration of signal amplification technologies to enhance sensitivity and involves expensive and complex fluorescence detectors. To enhance the detection performance of CRISPR/Cas-based biosensors, the integration of CRISPR/Cas with some alternative techniques can be considered. The CRISPR/Cas integrated electrochemical sensor (E-CRISPR) possesses advantages such as miniaturization, high sensitivity, high specificity, and fast response speed.E-CRISPR can convert the reactions between biomolecules and detecting components into electrical signals, rendering the detection signals more easily readable and reducing the impact of background values. Therefore,E-CRISPR enhances the accuracy of detection results. E-CRISPR has been applied in various fields, including medical and health, environmental monitoring, and food safety. Furthermore, E-CRISPR holds tremendous potential for advancing the detection levels of tumor markers.Among all types of Cas enzymes, the three most widely applied are Cas9, Cas12, and Cas13, along with their respective subtypes. In this work, we provided a brief overview of the principles and characteristics of Class II CRISPR/Cas single-effector proteins. This paper focused on the various detection technologies based on E-CRISPR technique, including electrochemical impedance spectroscopy, voltammetry, photoelectrochemistry, and electrochemiluminescence. We also emphasized the applications of E-CRISPR in the field of tumor diagnosis, which mainly encompasses the detection of three typical tumor markers (ctDNA, miRNA, and proteins). Finally, we discussed the advantages and limitations of E-CRISPR, current challenges, and future development prospects. In summary, althoughE-CRISPR platform has made significant strides in tumor detection, certain challenges still need to be overcome for their widespread clinical application. Continuous optimization of the E-CRISPR platform holds the promise of achieving more accurate tumor subtyping diagnoses in clinical settings, which would be of significant importance for early patient diagnosis and prognosis assessment.
10.Effects of melezitose on ulcerative colitis mice
Zhang-Hao CHEN ; Shuang GAO ; Jin-Fa LI ; Zhen GAN ; Jun-Min CHANG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2083-2087
Objective To investigate the mechanism of melezitose(MELE)on ulcerative colitis(UC)by structing a mouse model of ulcerative colitis(UC)induced by dextran sodium sulfate(DSS).Methods Forty-eight SPF grade male c57BL/6 mice were randomly divided into normal group(0.9%NaCl),model group(0.9%NaCl),control group(100 mg·kg-1 mesalazine)and experimental-L,-M,-H groups(20,40,80 mg·kg-1 melezitose solution).The UC model was induced by giving 3%DSS solution instead of drinking water,and the disease activity index(DAI)was evaluated.Serum levels of interleukin-1 β(IL-113),IL-6,IL-10 and tumor necrosis factor α(TNF-α)were detected by enzyme linked immunosorbent assay.The expression levels of major histocompatibility complex Ⅱ(MHC Ⅱ)and cluster of differentiation 4 receptors(CD4)protein were detected by Western blot.Results The levels of IL-1 β in serum in the experimental-M,-H groups,model group and normal group were(82.15±13.66),(75.56±11.07),(118.20±19.31)and(23.47±4.72)pg·mL-1;serum IL-6 levels were(71.54±16.48),(58.57±15.62),(140.60±5.76)and(30.33±4.15)pg·mL-1;serum IL-10 levels were(48.64±5.60),(52.65±7.99),(27.10±4.91)and(61.90±10.44)pg·mL-1;serum TNF-α levels were(70.33±8.51),(66.55±8.12),(90.88±4.90)and(34.18±4.15)pg·mL-1;the relative expression levels of MHC Ⅱ protein were 0.34±0.04,0.15±0.06,0.08±0.05 and 0.53±0.59;the relative expression levels of CD4 protein were 0.79±0.08,0.92±0.12,0.99±0.11 and 0.54±0.14,respectively.Compared with the model group,the above indexes in the experimental-M,-H groups showed statistically significant differences(P<0.05,P<0.01).Conclusion Melezitose could effectively improve the symptoms of UC mice;the mechanism may be through down-regulating MHC Ⅱ protein and up-regulating CD4 protein to activate T cell signal pathway to play an anti-inflammatory effect.

Result Analysis
Print
Save
E-mail