1.Microscopic Mechanism of Chronic Liver Disease and Novel Thinking of Medicine Management Based on Theory of "Yang Transforming Qi While Yin Constituting Form-sweat Pore"
Yuying XU ; Changpu ZHAO ; Rongzhi LI ; Yu ZHANG ; Fei WANG ; Chenyuan HAO ; Guangjie SHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):244-255
The theory of "Yang transforming Qi while Yin constituting form" in the Huangdi's Internal Classic is derived from the application, transformation, movement, and balance of Tao. It is highly condensed, revealing the true meaning of Tao and guiding the changes and progress of all natural things, including diseases. Therefore, the appearance of various physical diseases is the manifestation of Yin-Yang Qi transformation. Sweat pore, formed by the Qi transformation of Yin and Yang, is the nourishing and regulating system. It serves as the hub and channel, assisting in the flow and transformation of Qi, facilitating the exchange of material, energy, and information with the outside world. With sweat pore as the hub and based on the macro-control and holistic thinking of "Yang transforming Qi while Yin constituting form", this paper explores the microscopic mechanisms underlying chronic liver disease. In combination with the roles of mitochondria, exosomes, and the ultraliver sieve structure in the formation and progression of chronic liver disease, this paper elucidates the close internal relationship between the disease's initial quality, symptom signs, and its physiological and pathological functions under the guidance of this theory. Modern studies have shown that autophagy, intestinal flora disorders, glucose and lipid metabolism disturbances, activation of inflammatory factors, ferroptosis, and other microscopic pathological mechanisms are involved in the occurrence and development of chronic liver disease. The common connotation of the Yin-Yang concept in traditional Chinese medicine (TCM) and the pathological mechanisms in modern medicine is deeply analyzed. The corresponding relevant microscopic mechanisms and the guiding role of the theory of "Yang transforming Qi while Yin constituting form-sweat pore" in the management of chronic liver disease are summarized. Wind medicine promotes growth and transformation through sweat pore. The combination of pungent and sweet medicines facilitates Yang and disperse Yin. The formulas, combining the characteristics of wind medicine and pungent and sweet medicines, fit the principle of "Yang transforming Qi while Yin constituting form-sweat pore". This paper combines both macro and micro perspectives to explain the scientific connotation and microscopic mechanisms of chronic liver disease based on the theory of "Yang transforming Qi while Yin constituting form-sweat pore", and explore the prevention and treatment of chronic liver disease through the principles, methods, prescriptions, and medicines featured by combination of pungent and sweet medicines, facilitating Yang, activating sweat pore, and dispersing Yin, providing new ideas and reference for the clinical treatment of chronic liver disease.
2.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
3.The Influence of Social Context on Perceptual Decision Making and Its Computational Neural Mechanisms
Yu-Pei LIU ; Yu-Shu WANG ; Bin ZHAN ; Rui WANG ; Yi JIANG
Progress in Biochemistry and Biophysics 2025;52(10):2568-2584
Perceptual decision making refers to the process by which individuals make choices and judgments based on sensory information, serving as a fundamental ability for human adaptation to complex environments. While traditional research has focused on perceptual decision making in isolated contexts, growing evidence highlights the profound influence of social contexts prevalent in real-world scenarios. As a crucial factor supporting individual survival and development, social context not only provides rich information sources but also shapes perceptual decision making through top-down processing mechanisms, prompting researchers to recognize the inherently social nature of human decisions. Empirical studies have demonstrated that social information, such as others’ choices or group norms, can systematically bias individuals’ perceptual decisions, often manifesting as conformity behaviors. Social influence can also facilitate performance under certain conditions, particularly when individuals can accurately identify and adopt high-quality social information. The impact of social context on perceptual decisions is modulated by a variety of external and internal factors, including group characteristics(e.g., group size, response consistency), attributes of peers (e.g., familiarity, social status, distinctions between human and artificial agents), as well as individual differences such as confidence, personality traits, and developmental stage. The motivations driving social influence encompass three primary mechanisms: improving decision accuracy through informational influence, gaining social acceptance through normative influence, and maintaining positive self-concept. Recent computational approaches have employed diverse theoretical frameworks to provide valuable insights into the cognitive mechanisms underlying social influence in perceptual decision making. Reinforcement learning models demonstrate how social feedback shapes future choices through reward-based updating. Bayesian inference frameworks describe how individuals integrate personal beliefs with social information based on their respective reliabilities, dynamically updating beliefs to optimize decisions under uncertainty. Drift diffusion models offer powerful tools to decompose social influence into distinct cognitive components, allowing researchers to differentiate between changes in perceptual processing and shifts in decision criteria. Collectively, these models establish a comprehensive methodological foundation for disentangling the multiple pathways by which social context shapes perceptual decisions. Neuroimaging and electrophysiological studies provide converging evidence that social context influences perceptual decision making through multi-level neural mechanisms. At early perceptual processing stages, social influence modulates sensory evidence accumulation in parietal cortex and directly alters primary visual cortex activity, while guiding selective attention to stimulus features consistent with social norms through attentional alignment mechanisms. At higher cognitive levels, the reward system (ventral striatum, ventromedial prefrontal cortex) is activated during group-consistent decisions; emotion-processing networks (anterior cingulate cortex, insula, amygdala) regulate experiences of social acceptance and rejection; and mentalizing-related brain regions (dorsomedial prefrontal cortex, temporoparietal junction) support inference of others’ mental states and social information integration. These neural circuits work synergistically to achieve top-down multi-level modulation of perceptual decision making. Understanding the mechanisms by which social context shapes perceptual decision making has broad theoretical and practical implications. These insights inform the optimization of collective decision-making, the design of socially adaptive human-computer interaction systems, and interventions for cognitive disorders such as autism spectrum disorder and anorexia nervosa. Future studies should combine computational modeling and neuroimaging approaches to systematically investigate the multi-level and dynamic nature of social influences on perceptual decision making.
4.The protective effect and mechanism of cornuside on diabetic nephropathy model mice
Wei WANG ; Xiaoyang GAN ; Huiqin XU ; Yihui ZHU ; Anmei SHU ; Yingxue FU ; Bin YU ; Gaohong LYU
China Pharmacy 2024;35(4):395-400
OBJECTIVE To investigate the protective effect and potential mechanism of cornuside on diabetic nephropathy (DN) model mice. METHODS Male KK-Ay mice were fed with high-fat and high-sugar diet for two weeks to reproduce the DN model. The successfully modeled mice were randomly grouped into model group, aminoguanidine group (positive control,100 mg/kg) and cornuside group (100 mg/kg), and male C57BL/6J mice were included as normal group, with 6 mice in each group. Administration groups were given relevant medicine intragastrically, and normal group and model group were given a constant volume of normal saline intragastrically, once a day, for 8 consecutive weeks. The levels of fasting blood glucose (FBG), 24 h urinary protein, serum interleukin-12 (IL-12), IL-10, blood urea nitrogen (BUN) and serum creatinine (Scr) were detected; the pathological injury, fibrotic change and glomerular microstructure of renal tissue were observed; the expressions of the receptor of advanced glycation end products (RAGE), collagen type Ⅳ (COL-Ⅳ) and inducible nitric oxide synthase (iNOS) in renal cortex were detected in each group. RESULTS Compared with normal group, the renal cortex of mice in model group showed obvious inflammatory cell infiltration and fibrotic changes; the mesangial hyperplasia of glomerulus was serious and the basement membrane had a large number of irregular dark dense deposits; the levels of FBG and 24 h urinary protein, the serum levels of IL- 12, BUN and Scr, and the expression levels of RAGE, COL-Ⅳ and iNOS in the renal cortex were significantly increased, while the serum level of IL-10 was significantly decreased (P<0.01). Compared with the model group, the renal pathological injuries, fibrotic changes and glomerular microstructure of mice in administration groups were improved significantly, and the above quantitative indexes were generally improved (P<0.05 or P<0.01). CONCLUSIONS Cornuside has a certain protective effect on DN model mice. It can inhibit the inflammatory response, reduce urinary protein excretion, and alleviate renal fibrosis, which may be related to the inhibition of the advanced glycation end products/RAGE signaling pathway.
5. Research progress of neuronal injury mediated by microglial activation and depression
Ying HE ; Man-Shu ZOU ; Yu-Hong WANG ; Yuan-Shan HAN ; Man-Shu ZOU ; Yuan-Shan HAN ; Yu-Hong WANG
Chinese Pharmacological Bulletin 2024;40(1):12-15
Depression is a common neurological disorder with high incidence, high recurrence and high disability, but its pathogenesis is unclear. In recent years, the protective and attacking effects of glial cells on neurons have become the frontier of neurological disease research. Neuronal injury caused by abnormal activation of microglia (MG) plays an important role in the pathogenesis of depression. In this paper, through literature retrieval by GeenMedical and CNKI, the relevant pathways and key targets of MG activation in depression are summarized so as to provide a theoretical basis for further clinical research.
6.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
7.Lanthanide Metal Organic Framework as A New Unlabeled Fluorescence Anisotropy Probe for Detection of Phosphate Ions
Kai MAO ; Xiao-Yan WANG ; Yu-Jie LUO ; Jia-Li XIE ; Tian-Jin XIE ; Yuan-Fang LI ; Cheng-Zhi HUANG ; Shu-Jun ZHEN
Chinese Journal of Analytical Chemistry 2024;52(1):35-44,中插1-中插4
Fluorescence anisotropy(FA)analysis has many advantages such as no requirement of separation,high throughput and real-time detection,and thus has been widely used in many fields,including biochemical analysis,food safety detection,environmental monitoring,etc.However,due to the small volume or mass of the target,its combination with the fluorescence probe cannot produce significant signal change.To solve this issue,researchers often use nanomaterials to enhance the mass or volume of fluorophore to improve the sensitivity.Nevertheless,this FA amplification strategy also has some disadvantages.Firstly,nanomaterials are easy to quench fluorescence.As a result,the FA value is easily influenced by light scattering,which reduces the detection accuracy.Secondly,fluorescent probes in most methods require complex modification steps.Therefore,it is necessary to develop new FA probes that do not require the amplification of volume and mass or modification.As a new kind of nanomaterials,luminescent metal-organic framework(MOF)has a large volume(or mass)and strong fluorescence emission.It does not require additional signal amplification materials.As a consequence,it can be used as a potential FA probe.This study successfully synthesized a lanthanide metal organic framework(Ce-TCPP MOF)using cerium ion(Ce3+)as the central ion and 5,10,15,20-tetra(4-carboxylphenyl)porphyrin(H2TCPP)as the ligand through microwave assisted method,and used it as a novel unmodified FA probe to detect phosphate ions(Pi).In the absence of Pi,Ce-TCPP MOF had a significant FA value(r).After addition of Pi,Pi reacted with Ce3+in MOF and destroyed the structure of MOF into the small pieces,resulting in a decrease in r.The experimental results indicated that with the increase of Pi concentration,the change of the r of Ce-TCPP MOF(Δr)gradually increased.The Δr and Pi concentration showed a good linear relationship within the range of 0.5-3.5 μmol/L(0.016-0.108 mg/L).The limit of detection(LOD,3σ/k)was 0.41 μmol/L.The concentration of Pi in the Jialing River water detected by this method was about 0.078 mg/L,and the Pi value detected by ammonium molybdate spectrophotometry was about 0.080 mg/L.The two detection results were consistent with each other,and the detection results also meet the ClassⅡwater quality standard,proving that this method could be used for the detection of Pi in complex water bodies.
8.Jianwei Xiaozhang Tablets Improves Precancerous Lesions of Gastric Cancer in Rats via Regulating PI3K-Akt-eNOS Pathway
Hai-Yang HUANG ; Shao-Wen ZHONG ; Yun AN ; Yu-Xin WANG ; Shu-Min ZHU ; Jie GAO ; Xiao-Min LU ; Ming-Guo DONG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):709-718
Objective To investigate the therapeutic effect and mechanism of Jianwei Xiaozhang Tablets on rats with precancerous lesions of gastric cancer(PLGC).Methods Forty male SD rats were randomly divided into the normal group,the model group,the folic acid group and the Jianwei Xiaozhang Tablets group,with 10 rats in each group.In addition to the normal group,the other three groups of rats were prepared by gavage with Ranitidine Aqueous Solution combined with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)solution drinking method for the preparation of PLGC model.After successful modeling,drugs were administered accordingly for 7 weeks.The changes in body mass of rats during modeling and drug administration were recorded,the gross view of the stomach was observed and scored pathologically,the coefficients of spleen and liver were determined,the pathological changes in gastric tissue were observed by hematoxylin-eosin(HE)staining,enzyme-linked immunosorbent assay(ELISA)was used to measure serum gastrin(GAS),motilin(MTL)and glucagon(GC),Alisin Blue-Periodic Acid Schiff's(AB-PAS)staining was used to observe the thickness of the mucosal layer of gastric tissues,the expressions of phosphatidylinositol 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),phosphorylated Akt(p-Akt),and endothelial-type nitric oxide synthase(eNOS)proteins in gastric tissues were detected by protein immunoblotting(Western Blot),and the expression of vascular endothelial growth factor A(VEGFA)protein in gastric tissues was detected by immunofluorescence staining.Results Compared with the normal group,the body mass of rats in the model group grew slowly during the experimental period,gastric macroscopic pathological scores were significantly increased(P<0.01),splenic coefficient and hepatic coefficient were significantly decreased(P<0.01),the gastric tissues showed cuprocyte hyperplasia and intestinal chemotaxis,gastric tissues'inflammation scores were significantly increased(P<0.01),the serum GAS content was significantly increased(P<0.01),and the MTL,GC contents were significantly reduced(P<0.05),and the thickness of the mucous membrane layer of gastric tissue was significantly reduced(P<0.05),the protein expression levels of PI3K,p-PI3K,Akt,p-Akt and eNOS were reduced(P<0.01),and the protein expression level of VEGFA was reduced(P<0.01);compared with the model group,the above indexes of the Jianwei Xiaozhang Tablets group and the folic acid group were all significantly improved(P<0.05 or P<0.01),among which,the Jianwei Xiaozhang Tablets group had a better improvement effect in the proliferation of cup cells and intestinal chemotaxis in gastric tissues,the content of serum GAS,and the thickness of the mucous layer in gastric tissues.Conclusion The mechanism of the improvement of PLGC in rats by Jianwei Xiaozhang Tablets may be related to the activation of the PI3K-Akt-eNOS pathway,which in turn promotes the angiogenesis and repair of gastric damaged tissues.
9.The impact of programming optimization for atrioventricular synchrony after Micra AV leadless pacemakers implantation
Ze ZHENG ; Yu-Chen SHI ; Song-Yuan HE ; Shao-Ping WANG ; Shi-Ying LI ; Shu-Juan CHENG ; Jing-Hua LIU
Chinese Journal of Interventional Cardiology 2024;32(2):71-75
Objective To analyze the atrioventricular synchronization rate after implantation of Micra AV leadless pacemaker,and the impact of postoperative programming optimization on atrioventricular synchronization rate.Methods A prospective cohort study was conducted to select patients with complete atrioventricular block who underwent Micra AV leadless pacemaker implantation at Beijing Anzhen Hospital from August 2022 to June 2023.Programming optimization were performed at 1 week,1 month,and 3 months postoperatively,and atrioventricular synchronization rate,electrical parameters,and echocardiography were recorded.Results A total of 68 patients with complete atrioventricular block implanted with Micra AV were selected,with an average age of(68.2±9.7)years,including 47 males(69.1%).All patients were successfully implanted with Micra AV,and there were no serious postoperative complications;The average threshold,sense,and impedance parameters were stable during 1 week,1 month,and 3 months after the procedure;There was no significant difference in the EF value of postoperative echocardiography(P=0.162);The average atrioventricular synchronization rates at 1 week,1 month,and 3 months postoperatively were(75.2%vs.83.8%vs.91.6%,P=0.001).Conclusions As an mechanical atrial sensing,Micra AV requires personalized adjustment of relevant parameters;Postoperative follow-up programming optimization plays an important role in the atrioventricular synchronization and comfort level in patients with complete atrioventricular block after implantation of Micra AV leadless pacemaker.
10.Drug resistance and genetic diversity of clinical strains of Helicobacter pylori in the Qiannan Prefecture and Guiyang City,and their relationships with diseases
Yuan-Yuan ZHANG ; Ke PAN ; Meng-Heng MI ; Yu-Zhu GUAN ; Qiu-Dan LU ; Juan ZHENG ; Jin ZHANG ; Tian-Shu WANG ; Qi LIU ; Zheng-Hong CHEN
Chinese Journal of Zoonoses 2024;40(1):46-55
To understand Helicobacter pylori's drug resistance,genetic diversity,and relationship with clinical diseases in the Guiyang and Qiannan minority areas of Guizhou Province,we collected samples through endoscopy,and isolated and cul-tured H.pylori.The drug resistance and genotype characteristics were determined.The differences in different regions and dis-ease types were compared,and the structural characteristics of H.pylori and mixed infections with different strains of H.py-lori in Qiannan Prefecture were analyzed.A difference in the composition ratio of EPYIA typing in the cagA variable region was observed between the two areas(P=0.012),and the composition ratio of the vacA genotype differed(P=0.000).A total of 94.6%(53/56)new sequences of H.pylori strains from two regions were obtained by MLST.The rate of infection by H.pylori mixed with different strains was 44.4%in Qiannan Pre-fecture,and no significant difference was observed in the com-position of H.pylori mixed infections among patients with dif-ferent clinical diseases(P=0.349).Differences in EPI YA typ-ing and the vacA genotype composition ratio in the cagA varia-ble region of H.pylori were observed between the Qiannan Prefecture and Guiyang City.

Result Analysis
Print
Save
E-mail