1.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
2.Preparation and performance evaluation of S100B time-resolved fluorescence immunoassay kit
Dong-Qing FENG ; Bu-Zhuo XU ; Shu-Hong LUO ; Yu-Nan WU ; Zhuo ZHANG ; Hao TANG ; Yi-Ming WENG ; Ruo-Pan HUANG ; Xu-Dong SONG
Chinese Medical Equipment Journal 2024;45(1):47-55
Objective To develop a time-resolved fluorescent immunoassay kit for the rapid,accurate and quantitative detection of S100B protein in serum and to evaluate its performance.Methods The test strip was prepared using time-resolved fluorescent microsphere-labeled anti-S100B polyclonal antibody and rabbit IgG antibody,labeling pads,sample pads,S100B nitrocellulose films and absorbent paper,and an S100B time-resolved fluorescence immunoassay kit was obtained by assembling the cartridge.The performance of the kit developed was evaluated by standard curve,accuracy,minimum detection limit,linear interval,specificity,reproducibility and stability.The reference intervals of 199 pieces of healthy human serum and plasma samples from a certain region were detected with the kit,and the clinical performance of the kit and Roche Elecsys S100 kit was tested by synchronous blind method to assess the consistency of the results of the two kits for 142 samples.Results The S100B time-resolved fluorescence immunoassay kit had the standard curve beingy=(1.133 02+1.752 24)/[1+(x/1.082 20)×(-0.603 52)]-1.752 24,R2=0.999 08 and the linear range being[0.05,30]ng/mL,which met the requirements of the relative deviation of the accuracy within±15%,the minimum detection limit not hgier than 0.05 ng/mL,the relative deviation of specificity within±15%and the coefficient of variation of intra-and inter-batch difference less than 15%.The stability test results indicated that the kit was valid for 12 months at 2-30 ℃ conditions.The reference intervals of serum and plasma samples measured by the kit were both lower than 0.3 ng/mL.Clinical trials showed that the results by the kit and Roche Elecsys S100 Assay Kit were in high agreement(Kappa=0.906 1>0.80)and met the requirements.Conclusion The kit developed detects the concentration of S100B protein in serum quickly,accurately and quantitatively,and provides references for the diagnosis and treatment of neurological diseases,autoimmune diseases,cerebrovascular diseases and etc.[Chinese Medical Equipment Journal,2024,45(1):47-55]
3.Progress of biomacromolecule drug nanodelivery systems in the treatment of rare diseases
Shu-jie WEI ; Han-xing HE ; Jin-tao HAO ; Qian-qian LV ; Ding-yang LIU ; Shao-kun YANG ; Hui-feng ZHANG ; Chao-xing HE ; Bai XIANG
Acta Pharmaceutica Sinica 2024;59(7):1952-1961
Rare diseases still lack effective treatments, and the development of drugs for rare diseases (known as orphan drugs) is an urgent medical problem. As natural active ingredients in living organisms, some biomacromolecule drugs have good biocompatibility, low immunogenicity, and high targeting. They have become one of the most promising fields in drug research and development in the 21st century. However, there are still many obstacles in terms of
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5. Treatment advice of small molecule antiviral drugs for elderly COVID-19
Min PAN ; Shuang CHANG ; Xiao-Xia FENG ; Guang-He FEI ; Jia-Bin LI ; Hua WANG ; Du-Juan XU ; Chang-Hui WANG ; Yan SUN ; Xiao-Yun FAN ; Tian-Jing ZHANG ; Wei WEI ; Ling-Ling ZHANG ; Jim LI ; Fei-Hu CHEN ; Xiao-Ming MENG ; Hong-Mei ZHAO ; Min DAI ; Yi XIANG ; Meng-Shu CAO ; Xiao-Yang CHEN ; Xian-Wei YE ; Xiao-Wen HU ; Ling JIANG ; Yong-Zhong WANG ; Hao LIU ; Hai-Tang XIE ; Ping FANG ; Zhen-Dong QIAN ; Chao TANG ; Gang YANG ; Xiao-Bao TENG ; Chao-Xia QIAN ; Guo-Zheng DING
Chinese Pharmacological Bulletin 2023;39(3):425-430
COVID-19 has been prevalent for three years. The virulence of SARS-CoV-2 is weaken as it mutates continuously. However, elderly patients, especially those with underlying diseases, are still at high risk of developing severe infections. With the continuous study of the molecular structure and pathogenic mechanism of SARS-CoV-2, antiviral drugs for COVID-19 have been successively marketed, and these anti-SARS-CoV-2 drugs can effectively reduce the severe rate and mortality of elderly patients. This article reviews the mechanism, clinical medication regimens, drug interactions and adverse reactions of five small molecule antiviral drugs currently approved for marketing in China, so as to provide advice for the clinical rational use of anti-SARS-CoV-2 in the elderly.
6. Research progress on mechanisms of neuroinflammation induced by methamphetamine and HIV-1 Tat protein
Yi TAN ; Gen-Meng YANG ; Shu-Wei ZHANG ; Hui-Jie ZHANG ; Hao-Wei WANG ; Lin MIAO ; Yi LI ; Zhen LI ; Xiao-Feng ZENG ; Juan LI
Chinese Pharmacological Bulletin 2023;39(8):1417-1421
Methamphetamine abuse and HIV infection are extremely serious public health and social problems facing the world today. Methamphetamine and HIV-1 Tat protein can induce neurotoxicity in an individual and synergistic way, and neuroinflammation is one of the most important mechanisms for ca-using neurotoxicity. Neuroinflammation can be mediated by glial cells, cytokines, NLRP3 inflammasomes, etc. This paper reviews the research progress of neuroinflammation induced by methamphetamine and HIV-1 Tat protein in recent years, with the aim of providing reference and basis for further exploration of the mechanisms of neuroinflammation caused by them and effective drug intervention targets in the future.
7.Reliability testing and clinical effectiveness evaluation of the scoring and classification system for osteoporotic thoracolumbar fracture
Qingda LI ; Jianan ZHANG ; Baorong HE ; Shiqing FENG ; Yanzheng GAO ; Jun SHU ; Hao WANG ; Dianming JIANG ; Wenyuan DING ; Yuan HE ; Junsong YANG ; Zhengping ZHANG ; Xinhua YIN ; Bolong ZHENG ; Yunfei HUANG ; Datong LI ; Rui GUO ; Hao AN ; Xiaohui WANG ; Tuanjiang LIU ; Dingjun HAO
Chinese Journal of Trauma 2023;39(11):980-990
Objective:To test and evaluate the reliability and clinical effectiveness of osteoporotic thoracolumbar fracture (OTLF) scoring and classification system.Methods:A multicenter retrospective case series study was conducted to analyze the clinical data of 530 OTLF patients admitted to 8 hospitals including Honghui Hospital Affiliated to Xi'an Jiaotong University from January 2021 to June 2022. There were 212 males and 318 females, aged 55-90 years [(72.6±10.8)years]. There were 4 patients with grade C and 18 with grade D according to American Spinal Injury Association (ASIA) classification. According to the osteoporotic thoracolumbar injury classification and severity (OTLICS) score, all patients had an OTLICS score over 4 points and required surgical treatment. Among them, 410 patients had acute symptomatic OTLF (ASOTLF), including 24 patients with type I, 159 type IIA, 47 type IIB, 31 type IIC, 136 type IIIA, 8 type IIIB, 2 type IV (absence of neurological symptoms) and 3 type IV (presence of neurological symptoms), and 120 patients had chronic symptomatic OTLF (CSOTLF), including 62 patients with type I, 21 type II, 17 type III, 3 type IV (reducible under general anesthesia), 9 type IV (not reducible under general anesthesia), 1 type V (reducible under general anesthesia), 5 type V (presence of neurological symptoms), and 2 type V (not reducible under general anesthesia). Surgical procedures included percutaneous vertebroplasty (PVP), positional repositioning plus PVP, percutaneous kyphoplasty (PKP), posterior open reduction combined with bone graft fusion and bone cement augmented screw internal fixation, posterior open reduction combined with decompression, bone graft fusion and bone cement augmented screw internal fixation, and posterior open reduction combined with osteotomy and orthopedics, bone graft fusion and bone cement augmented screw internal fixation. A weighted Kappa was used to test the interobserver and intraobserver reliability of the OTLICS score, the ASOTLF classification, and the CSOTLF classification. The visual analog scale (VAS), Oswestry disability index (ODI), ASIA classification were compared before, at 1 month after surgery and at the last follow-up. Incidence of postoperative complications was observed.Results:The percentage of mean interobserver agreement for OTLICS staging was 93.4%, with a mean confidence Kappa value of 0.86, and the percentage of mean intraobserver agreement was 93.0%, with a mean confidence kappa value of 0.86. The percentage of mean interobserver agreement for ASOTLF staging was 94.2%, with a mean confidence Kappa value of 0.84, and the percentage of mean intraobserver agreement was 92.5%, with a mean confidence Kappa value of 0.83. The percentage of mean interobserver agreement for CSOTLF subtyping was 91.9%, with a mean confidence Kappa value of 0.80, and the percentage of mean intraobserver agreement was 91.3%, with a mean confidence Kappa value of 0.81. All the patients were followed up for 6-12 months [(9.0±2.1)months]. The VAS and ODI scores were significantly lower in patients with ASOTLF and CSOTLF classifications at 1 month after surgery and at the last follow-up than those before surgery (all P<0.05). The VAS scores in patients with ASOTLF types IIA, IIB, IIC, IIIA, and IV were significantly lower at the last follow-up than that at 1 month after surgery; the ODI scores in patients with ASOTLF types I, IIA, IIB, IIIA, IIIB and IV were significantly lower at the last follow-up than those at 1 month after surgery. The VAS scores in patients with CSOTLF types II, III, IV, and V were significantly lower at the last follow-up than those at 1 month after surgery, and the ODI scores in patients with all CSOTLF types were significantly lower at the last follow-up than those at 1 month after surgery (all P<0.05). Two patients with ASIA grade C recovered to grade D, and the rest recovered to grade E at the last follow-up ( P<0.01). No major vessel or nerve injury or internal fixation failure was found during follow-up. There were 18 patients with cement leakage, none of whom showed relevant clinical symptoms. There were 35 patients with new vertebral fractures, all of whom recovered well after symptomatic treatment. Conclusions:The OTLICS score, ASOTLF classification and CSOTLF classification have a high degree of reliability. Application of stepwise treatment for patients with different levels of injury according to the scoring and classification system can reduce pain, promote recovery of the spinal function, and reduce complications, which is of some significance in guiding the selection of clinical treatment.
8.Mechanism of curcumin inhibiting choroidal neovascularization in brown Norway rat
Shui-Ling CHEN ; Ze-Feng KANG ; Wen-Li CHU ; Xue-Lian HAO ; Fang-Fang TAO ; Ming-Ming ZHANG ; Shu-Jiao LI
International Eye Science 2023;23(4):537-545
AIM:To investigate the mechanism of curcumin inhibiting the choroidal neovascularization(CNV)of brown Norway(BN)rats.METHODS: CNV model of 36 BN rats was established through laser photocoagulation induction, and they were divided into 6 groups with 6 rats in each group. Normal group was fed normally with no intervention, while 532nm laser photocoagulation was used to establish a experimental CNV model in BN rats. Rats after modeling were respectively intervened for 14d and divided into model group, ranibizumab group, curcumin low [100mg/(kg·d)], medium [200mg/(kg·d)], and high [400mg/(kg·d)] dose group. The model group was given intragastric administration of saline for 14d, ranibizumab(10mg/mL, 0.2mL/dose)was injected at 2d after photocoagulation with 5μL once for rats in ranibizumab group, and different concentrations of curcumin were intragastrically administrated to the rats in low, medium and high groups for 14d. Fundus photography, fundus fluorescein angiography(FFA)and indocyanine green angiography(ICGA)examination were performed at 14d after photocoagulation. Ocular histopathological specimens of rats with CNV were made, and the central thickness of CNV were observed by HE staining. Ocular histopathological specimens were made, and the expressions of AKT/p-AKT/HIF-1α/VEGF signaling pathway-related proteins were observed by immunohistochemistry. The mRNA relative expressions of AKT/HIF-1α/VEGF factor in CNV tissues were detected by RT-qPCR, and the protein expressions of AKT/p-AKT/HIF-1α/VEGF factor in CNV tissues were detected by Western-blot.RESULTS: CNV generation rates in the model group, the ranibizumab group, and the low, medium and high-dose curcumin groups were 78.18%, 73.21%, 77.19%, 75.86%, 74.55%, respectively, which were higher than 70%. The average absorbance were 182.12±6.59, 119.22±8.03, 166.45±8.33, 164.34±5.69, 149.22±6.45, respectively; the ranibizumab group was significantly lower than the model group(P<0.05); the low-dose, medium-dose and high-dose groups were significantly higher than the ranibizumab group(P<0.05), and the curcumin high-dose group was significantly lower than the model group(P<0.05). HE staining showed that the retinal tissue structure of BN rats in normal group was clear and neatly arranged. The central thickness of CNV in the ranibizumab group was significantly reduced at 14d after photocoagulation compared with the model group(P<0.05); While the curcumin high-dose group was significantly reduced compared with the model group(P<0.05), but increased when compared with ranibizumab group(P<0.05). Immunohistochemistry results showed that AKT, p-AKT, HIF-1α, and VEGF factors were negatively expressed in the retinal tissue structure of BN rats in the normal group, and no brown-yellow reactants were found. The expression of AKT, p-AKT, HIF-1α, and VEGF factors in the model group were higher than that in the normal group at 14d after photocoagulation(P<0.05); the ranibizumab group was lower than the model group(P<0.05). While the expression of the curcumin high-dose group was significantly decreased compared with the model group(P<0.05), but significantly increased when compared with ranibizumab group(P<0.05). The mRNA results showed that the relative expression levels of AKT, HIF-1α and VEGF mRNA in the model group at 14d after photocoagulation were higher than those of the normal group(P<0.05); the ranibizumab group was lower than the model group(P<0.05). While curcumin high-dose group was significantly decreased compared with the model group(P<0.05), but significantly increased when compared with ranibizumab group(P<0.05). Western-blot results showed that there was no significant difference in the relative expression of AKT protein among each experimental groups at 14d after photocoagulation. The relative expression of p-AKT protein in the model group was significantly higher than that in the normal group(P<0.05); the ranibizumab group was significantly lower than the model group(P<0.05); the curcumin high-dose group was significantly lower than the model group(P<0.05). The relative expression levels of HIF-1α protein were significantly higher in the model group than in the normal group(P<0.05), and the ranibizumab group was lower than in the model group(P<0.05). The relative expression levels of HIF-1α protein was lower in the curcumin high-dose group than in the model group(P<0.05)but higher than ranibizumab group(P<0.05). The relative expression level of VEGF protein was significantly lower in the curcumin medium/high-dose group than in the model group(P<0.05).CONCLUSION: Curcumin at 400mg/(kg·d)has an inhibitory effect on CNV in BN rats. The mechanism may be closely related to inhibiting the activation of AKT/p-AKT/HIF-1α/VEGF signaling pathways.
9.Clinical guideline for diagnosis and treatment of adult ankylosing spondylitis combined with thoracolumbar fracture (version 2023)
Jianan ZHANG ; Bohua CHEN ; Tongwei CHU ; Yirui CHEN ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Yong HAI ; Lijun HE ; Yuan HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Dechun LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Wei MEI ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Honghui SUN ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Yongming XI ; Hong XIA ; Jinglong YAN ; Liang YAN ; Wen YUAN ; Gang ZHAO ; Jie ZHAO ; Jianguo ZHANG ; Xiaozhong ZHOU ; Yue ZHU ; Yingze ZHANG ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2023;39(3):204-213
Ankylosing spondylitis (AS) combined with spinal fractures with thoracic and lumbar fracture as the most common type shows characteristics of unstable fracture, high incidence of nerve injury, high mortality and high disability rate. The diagnosis may be missed because it is mostly caused by low-energy injury, when spinal rigidity and osteoporosis have a great impact on the accuracy of imaging examination. At the same time, the treatment choices are controversial, with no relevant specifications. Non-operative treatments can easily lead to bone nonunion, pseudoarthrosis and delayed nerve injury, while surgeries may be failed due to internal fixation failure. At present, there are no evidence-based guidelines for the diagnosis and treatment of AS combined with thoracic and lumbar fracture. In this context, the Spinal Trauma Academic Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate the Clinical guideline for the diagnosis and treatment of adult ankylosing spondylitis combined with thoracolumbar fracture ( version 2023) by following the principles of evidence-based medicine and systematically review related literatures. Ten recommendations on the diagnosis, imaging evaluation, classification and treatment of AS combined with thoracic and lumbar fracture were put forward, aiming to standardize the clinical diagnosis and treatment of such disorder.
10.Evidence-based guideline for clinical diagnosis and treatment of acute combination fractures of the atlas and axis in adults (version 2023)
Yukun DU ; Dageng HUANG ; Wei TIAN ; Dingjun HAO ; Yongming XI ; Baorong HE ; Bohua CHEN ; Tongwei CHU ; Jian DONG ; Jun DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Yong HAI ; Lijun HE ; Yuan HE ; Dianming JIANG ; Jianyuan JIANG ; Weiqing KONG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Fei LUO ; Jianyi LI ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Jiang SHAO ; Jiwei TIAN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Xiangyang WANG ; Hong XIA ; Jinglong YAN ; Liang YAN ; Wen YUAN ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Xuhui ZHOU ; Mingwei ZHAO
Chinese Journal of Trauma 2023;39(4):299-308
The acute combination fractures of the atlas and axis in adults have a higher rate of neurological injury and early death compared with atlas or axial fractures alone. Currently, the diagnosis and treatment choices of acute combination fractures of the atlas and axis in adults are controversial because of the lack of standards for implementation. Non-operative treatments have a high incidence of bone nonunion and complications, while surgeries may easily lead to the injury of the vertebral artery, spinal cord and nerve root. At present, there are no evidence-based Chinese guidelines for the diagnosis and treatment of acute combination fractures of the atlas and axis in adults. To provide orthopedic surgeons with the most up-to-date and effective information in treating acute combination fractures of the atlas and axis in adults, the Spinal Trauma Group of Orthopedic Branch of Chinese Medical Doctor Association organized experts in the field of spinal trauma to develop the Evidence-based guideline for clinical diagnosis and treatment of acute combination fractures of the atlas and axis in adults ( version 2023) by referring to the "Management of acute combination fractures of the atlas and axis in adults" published by American Association of Neurological Surgeons (AANS)/Congress of Neurological Surgeons (CNS) in 2013 and the relevant Chinese and English literatures. Ten recommendations were made concerning the radiological diagnosis, stability judgment, treatment rules, treatment options and complications based on medical evidence, aiming to provide a reference for the diagnosis and treatment of acute combination fractures of the atlas and axis in adults.

Result Analysis
Print
Save
E-mail