1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.Discovery of a normal-tension glaucoma-suspect rhesus macaque with craniocerebral injury: Hints of elevated translaminar cribrosa pressure difference.
Jian WU ; Qi ZHANG ; Xu JIA ; Yingting ZHU ; Zhidong LI ; Shu TU ; Ling ZHAO ; Yifan DU ; Wei LIU ; Jiaoyan REN ; Liangzhi XU ; Hanxiang YU ; Fagao LUO ; Wenru SU ; Ningli WANG ; Yehong ZHUO
Chinese Medical Journal 2024;137(4):484-486
3.Detection and In-house Quality Control Assessment for Cyclosporin A and Tacrolimus by High Performance Liquid Chromatography-tandem Mass Spectormetry Method
Like ZHONG ; Xiufang MI ; Qi SHU ; Gaoqi XU ; Chaoneng HE ; Junfeng ZHU
Herald of Medicine 2024;43(2):196-202
Objective To establish a quality control method for monitoring the blood concentrations of cyclosporin A and tacrolimus by HPLC-MS/MS,and to evaluate the quality control samples using the Westgard multi-rule theory.Methods HPLC-MS/MS was used to determine the concentration of cyclosporin A and tacrolimus in human whole blood.The quality control samples of low,medium and high concentration levels in the therapeutic drug monitoring process were statistically analyzed,Levery-Jennings and Z-score quality control charts were drawn,and the Westgard multi-rule theory was applied for in-house quality control evaluation.Results The established method was fully validated with linear ranges of 10.40-1 040.00 ng·mL-1 and 0.50-49.50 ng·mL-1,the quantification limits were 10.40 and 0.50 ng·mL-1,respectively.The extraction recoveries were 108.61%-113.24%and 101.99%-109.37%,respectively.The matrix factors normalized by internal standard were 106.68%-111.27%and 95.70%-97.81%for cyclosporin A and tacrolimus,respectively.The intra-day and inter-day accuracy and precision were less than 15.0%.Other parameters were also validated and met the acceptance criteria.Levery-Jennings and Z-score quality control charts showed that there were 4 warnings(violation of the 12s rule)in the results of the 26 groups of quality control samples in the third quarter of 2022,and no phenomenon was observed to be out of control.Conclusion The established in-house quality control system for therapeutic drug monitoring of cyclosporin A and tacrolimus can effectively ensure the accuracy of blood drug concentration detection.
4.Drug resistance and genetic diversity of clinical strains of Helicobacter pylori in the Qiannan Prefecture and Guiyang City,and their relationships with diseases
Yuan-Yuan ZHANG ; Ke PAN ; Meng-Heng MI ; Yu-Zhu GUAN ; Qiu-Dan LU ; Juan ZHENG ; Jin ZHANG ; Tian-Shu WANG ; Qi LIU ; Zheng-Hong CHEN
Chinese Journal of Zoonoses 2024;40(1):46-55
To understand Helicobacter pylori's drug resistance,genetic diversity,and relationship with clinical diseases in the Guiyang and Qiannan minority areas of Guizhou Province,we collected samples through endoscopy,and isolated and cul-tured H.pylori.The drug resistance and genotype characteristics were determined.The differences in different regions and dis-ease types were compared,and the structural characteristics of H.pylori and mixed infections with different strains of H.py-lori in Qiannan Prefecture were analyzed.A difference in the composition ratio of EPYIA typing in the cagA variable region was observed between the two areas(P=0.012),and the composition ratio of the vacA genotype differed(P=0.000).A total of 94.6%(53/56)new sequences of H.pylori strains from two regions were obtained by MLST.The rate of infection by H.pylori mixed with different strains was 44.4%in Qiannan Pre-fecture,and no significant difference was observed in the com-position of H.pylori mixed infections among patients with dif-ferent clinical diseases(P=0.349).Differences in EPI YA typ-ing and the vacA genotype composition ratio in the cagA varia-ble region of H.pylori were observed between the Qiannan Prefecture and Guiyang City.
5.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
6.Effects of hydroxysafflor yellow A on autophagy in bEnd.3 cells after oxygen-glucose deprivation
Yao-Yao DAI ; Meng-Qi SHU ; Ru-Heng WEI ; Zhu-Yue MIAO ; Zhi-Bin DING ; Dong MA ; Jian-Jun HUANG ; Li-Juan SONG ; Cun-Gen MA
The Chinese Journal of Clinical Pharmacology 2024;40(12):1734-1738
Objective To explore the effect and mechanism of hydroxysafflor yellow A(HSYA)on autophagy in bEnd.3 cells after oxygen-glucose deprivation(OGD).Methods The bEnd.3 cells were divided into normal group(conventional culture),model group(OGD model),HSYA group(OGD model+75 μmol·L-1 HSYA),3-methyladenine(3MA)group(5 mmol·L-1 3MA+OGD model)and 3 MA+HSYA group(5 mmol·L-1 3 MA+OGD model+75 μmol·L-1 HSYA).The level of apoptosis was determined by TUNEL fluorescence staining;Western blot was used to detect the expression of autophagy,blood brain barrier(BBB)related proteins;real time fluorescence quantitative polymerase chain reaction method for determining the expression of sirtuin-1(SIRT1)and forkhead box protein O3a(FOXO3A)mRNA.Results In the normal group,model group,HSYA group,3MA group and 3MA+HSYA group,the positive cells selected for TUNEL staining were 5.00±1.00,28.00±2.00,21.00±3.00,35.33±2.51 and 29.67±2.52;the expression levels of microtubule-associated protein 1 light chain 3-Ⅱ/-Ⅰ(LC3-Ⅱ/-Ⅰ)were 0.90±0.20,1.34±0.10,1.95±0.14,0.76±0.15 and 1.14±0.09;sequestosome 1(P62)were 0.99±0.02,0.60±0.02,0.38±0.01,0.67±0.04 and 0.54±0.01;occludin were 1.39±0.17,0.62±0.15,1.00±0.09,0.40±0.13 and 0.80±0.15;zonula occludens-1(ZO-1)were 1.63±0.20,0.64±0.06,0.98±0.14,0.37±0.14 and 0.87±0.04;SIRT1 mRNA were 1.00±0.00,0.75±0.07,1.69±0.09,0.31±0.02 and 0.56±0.01;FOXO3A mRNA were 1.00±0.00,0.80±0.05,1.47±0.09,0.40±0.01 and 0.62±0.09,respectively.Significant differences were found between model group and normal group,HSYA group and model group,3MA+HSYA group and 3MA group(P<0.05,P<0.01,P<0.001).Conclusion HSYA may enhance autophagy levels in bEnd.3 cells after OGD through the SIRT1/FOXO3A pathway,inhibit cell apoptosis and alleviate BBB damage.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.The protective effect of Jujing formula on tretina of mice with dry age-related macular degeneration
Cheng-Cheng QI ; Ruo-Ying FAN ; Xue-Sen WANG ; Shu-Lan SU ; Yue ZHU ; Sheng GUO ; Hong-Jie KANG ; Xue-Yi ZHOU ; Jin-Ao DUAN
Chinese Pharmacological Bulletin 2024;40(7):1358-1367
Aim To investigate the protective effect of Jujing formula on retina of mice with dry age-related macular degeneration(AMD).Methods The mouse model of dry AMD was induced by intraperitoneal in-jection of sodium iodate,and the prognosis was given to the Jujing formula.Retinal thickness was detected by optical coherence tomography(OCT),the retinal morphological changes were observed by hematoxylin-eosin(HE)staining,and the apoptosis of retinal cells was detected by in situ terminal transferase labeling(TUNEL)staining.Combination of tumor necrosis fac-tor-α(TNF-α),interleukin-6(IL-6)and interleukin-1β(IL-1 β)in eyeballs and serum,superoxide dis-mutase(SOD),glutathione(GSH)and malondialde-hyde(MDA)were evaluated to assess the protective effects of Jujing formula on retinal injury in mice with dry AMD.Results The results of OCT,HE and TUNEL staining showed that Jujing formula significant-ly improved the retinal injury induced by sodium iodate in mice with dry AMD,increased the retinal thickness(P<0.05),reduced the apoptosis of retinal cells(P<0.01),and increased the levels of GSH,IL-6 and SOD activity in eyeballs and serum(P<0.01).The levels of TNF-α,IL-6,IL-1β and MDA were reduced(P<0.01).Conclusions Jujing formula has certain therapeutic effects on retinal injury in dry AMD,which may be related to inhibiting inflammatory response and enhancing antioxidant capacity.
9.Effect of electroacupuncture at the acupoints for Tiaozang Xingshen on cerebral metabolism in the patients with type 2 diabetes mellitus-associated cognitive dysfunction.
Lin YAO ; Yan-Ze LIU ; Meng-Yuan LI ; Zi-Yang ZHANG ; Shuo YU ; Shu-Nan SUN ; Ming XU ; Hai-Zhu ZHENG ; Shi-Qi MA ; Zhen ZHONG ; Hong-Feng WANG
Chinese Acupuncture & Moxibustion 2023;43(12):1343-1350
OBJECTIVES:
To investigate the cerebral metabolism in the patients with type 2 diabetes mellitus-associated cognitive dysfunction (T2DACD) and explore the mechanism of electroacupuncture (EA) at the acupoints for Tiaozang Xingshen (adjusting zangfu function and rescuing the spirit) in treatment of T2DACD, using magnetic resonance spectroscopy.
METHODS:
Fifteen patients with T2DACD (observation group) and 22 healthy subjects (control group) were enrolled. In the observation group, the patients were treated with EA for Tiaozang Xingshen at Baihui (GV 20) and Shenting (GV 24), and bilateral Feishu (BL 13), Pishu (BL 20), Shenshu (BL 23), Zusanli (ST 36), Sanyinjiao (SP 6), Hegu (LI 4) and Taichong (LR 3). EA was operated with disperse-dense wave, 2 Hz/100 Hz in frequency and 0.1 mA to 1.0 mA in current intensity; 30 min each time, once daily. One course of EA consisted of 5 treatments, at the interval of 2 days and the intervention lasted 8 courses. Before treatment in the control group, before and after treatment in the observation group, the score of Montreal cognitive assessment scale (MoCA), the score of clinical dementia rating (CDR), Flanker paradigm, Stroop paradigm, Nback paradigm, the score of self-rating anxiety scale (SAS), the score of self-rating depression scale (SDS), and the score of Hamilton depression rating scale (HAMD) were evaluated separately; the glycolipid metabolic indexes (fasting plasma glucose [FPG], glycosylated hemoglobin type A1c [HbA1c], total cholesterol [TC], triacylglycerol [TG], high-density lipoprotein cholesterol [HDL-C] and low-density lipoprotein cholesterol [LDL-C]) were determined;with the magnetic resonance spectroscopy technique adopted, the metabolites in the basal ganglia area were detected. The correlation analysis was performed for the metabolite values with MoCA score, CDR score , Flanker paradigm, Stroop paradigm, and Nback paradigm.
RESULTS:
Before treatment, compared with the control group, in the observation group, MoCA score was lower (P<0.001), CDR score and the levels of FPG and HbA1c were higher (P<0.001); the reaction times of Flanker non-conflict, Flanker conflict, Stroop neutrality, Stroop congruence, Stroop conflict, and 1-back were prolonged (P<0.05, P<0.001), and the accuracy of Flanker conflict, Stroop conflict, and 1-back decreased (P<0.05, P<0.01); the ratio of N-acetyl aspartate (NAA) to creatine (Cr) in the left basal ganglia area was dropped (P<0.001), and that of myo-inositol (MI) to Cr in the right side increased (P<0.05). In the observation group after treatment, compared with the levels before treatment, MoCA score was higher (P<0.001), the scores of CDR, SAS and HAMD were reduced (P<0.01, P<0.05), the reaction times of Flanker conflict and Stroop conflict shortened (P<0.001, P<0.05), and the accuracy of Flanker conflict and 1-back increased (P<0.001, P<0.05); the ratio of NAA to Cr in the left basal ganglia area and that of the gamma-aminobutyric acid (GABA) to Cr in the right increased (P<0.05), that of MI to Cr in the right decreased (P<0.05). Before treatment, in the observation group, the ratio of MI to Cr in the right basal ganglia area was positively correlated with the reaction time of Stroop congruence (r=0.671, P=0.012) and this ratio was positively correlated with the reaction time of Stroop conflict (r=0.576, P=0.039).
CONCLUSIONS
Electroacupuncture for "adjusting zangfu function and rescuing the mind" improves the cognitive function of T2DACD patients, which may be related to the regulation of NAA, MI and GABA levels in the basal ganglia.
Humans
;
Electroacupuncture
;
Acupuncture Therapy
;
Acupuncture Points
;
Diabetes Mellitus, Type 2/therapy*
;
Glycated Hemoglobin
;
Cognitive Dysfunction/therapy*
;
Cholesterol
;
gamma-Aminobutyric Acid
10.Measures for waste and by-product recycling and circular economy of whole industry chain of traditional Chinese medicine resources facing carbon peak and carbon neutrality (dual carbon) goals.
Jin-Ao DUAN ; Shu-Lan SU ; Sheng GUO ; Hua-Xu ZHU ; Hai-Feng LIU ; Ming ZHAO ; Lan-Ping GUO ; Run-Huai ZHAO ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2023;48(17):4545-4551
It has become a common consensus that resource conservation and intensive recycling for improving resource utilization efficiency is an important way to achieve carbon peak and carbon neutrality(dual carbon). Traditonal Chinese medicine(TCM)resources as national strategic resources are the material basis and fundamental guarantee for the development of TCM industry and health services. However, the rapid growth of China's TCM industry and the continuous expansion and extension of the industrial chain have exposed the low efficiency of TCM resources. Resource waste and environmental pollution caused by the treatment and discharge of TCM waste have emerged as major problems faced by the development of the industry, which has aroused wide concern. Considering the dual carbon goals, this paper expounds the role and potential of TCM resource recycling and circular economy industry development. Taking the typical model of TCM resource recycling as the case of circular economy industry in reducing carbon source and increasing carbon sink, this paper puts forward the suggestions for the TCM circular economy industry serving the double carbon goals. The suggestions mainly include strengthening the policy and strategic leading role of the double carbon goals, building an objective evaluation system of low-carbon emission reduction in the whole industrial chain of TCM resources, building an industrial demonstration park for the recycling of TCM resources, and promoting the establishment of a circular economy system of the whole industrial chain of TCM resources. These measures are expected to guide the green transformation of TCM resource industry from linear economic model to circular economy model, provide support for improving the utilization efficiency and sustainable development of TCM resources, and facilitate the low-carbon and efficient development of TCM resource industry and the achievement of the double carbon goals.
Medicine, Chinese Traditional
;
Equipment Reuse
;
Goals
;
Environmental Pollution
;
Economic Development
;
Carbon
;
China

Result Analysis
Print
Save
E-mail