2.Advancements and Challenges in Robot-Assisted Bone Processing in Neurosurgical Procedures
Yoshihiro KITAHAMA ; Hiroo SHIZUKA ; Yuto NAKANO ; Yukoh OHARA ; Jun MUTO ; Shuntaro TSUCHIDA ; Daisuke MOTOYAMA ; Hideaki MIYAKE ; Katsuhiko SAKAI
Neurospine 2024;21(1):97-103
Objective:
Practical applications of nerve decompression using neurosurgical robots remain unexplored. Our ongoing research and development initiatives, utilizing industrial robots, aim to establish a secure and efficient neurosurgical robotic system. The principal objective of this study was to automate bone grinding, which is a pivotal component of neurosurgical procedures.
Methods:
To achieve this goal, we integrated an endoscope system into a manipulator and conducted precision bone machining using a neurosurgical drill, recording the grinding resistance values across 3 axes. Our study encompassed 2 core tasks: linear grinding, such as laminectomy, and cylindrical grinding, such as foraminotomy, with each task yielding unique measurement data.
Results:
In linear grinding, we observed a proportional increase in grinding resistance values in the machining direction with acceleration. This observation suggests that 3-axis resistance measurements are a valuable tool for gauging and predicting deep cortical penetration. However, problems occurred in cylindrical grinding, and a significant error of 10% was detected. The analysis revealed that multiple factors, including the tool tip efficiency, machining speed, teaching methods, and deflection in the robot arm and jig joints, contributed to this error.
Conclusion
We successfully measured the resistance exerted on the tool tip during bone machining with a robotic arm across 3 axes. The resistance ranged from 3 to 8 Nm, with the measurement conducted at a processing speed approximately twice that of manual surgery performed by a surgeon. During the simulation of foraminotomy under endoscopic grinding conditions, we encountered a -10% error margin.
3.A Case of Severe Friction Melanosis Improved by Intake of Food Containing Hot Water Extract of Coix lacryma-jobi L. var. ma-yuen Stapf with Husks
Shizuka UEHARA ; Mitsuru YOSHIDA
Japanese Journal of Complementary and Alternative Medicine 2024;21(1):23-25
Friction melanosis is a cutaneous entity characterized by a brownish pigmentation distributed on the skin over bony regions of various sites including a trunk or the limbs. In this report, we presented the case of a 44-year-old woman who developed severe friction melanosis around both knees and lower extremities for about 10 years. Coix-seed Reactive Derivatives (CRD) was administrated orally 4.0 g/day for 20 weeks and the lesions of pigmentation improved moderately. Further research is needed to define the optimal duration of CRD intake against friction melanosis.
4.A Case of Facial Seborrheic Keratosis Improved by Intake of Food Containing Hot Water Extract of Coix lacryma-jobi L. var. ma-yuen Stapf with Husks
Shizuka UEHARA ; Mitsuru YOSHIDA
Japanese Journal of Complementary and Alternative Medicine 2024;21(1):27-30
In this report, we presented the case of a 37-year-old woman who developed facial seborrheic keratosis for about 8 years. Coix-seed Reactive Derivatives(CRD) was administrated orally 4.0 g/day for 20 weeks, and the lesions of seborrheic keratosis improved moderately. Further research is needed to define the optimal dose and duration of CRD intake against these lesions.
5.Advancements and Challenges in Robot-Assisted Bone Processing in Neurosurgical Procedures
Yoshihiro KITAHAMA ; Hiroo SHIZUKA ; Yuto NAKANO ; Yukoh OHARA ; Jun MUTO ; Shuntaro TSUCHIDA ; Daisuke MOTOYAMA ; Hideaki MIYAKE ; Katsuhiko SAKAI
Neurospine 2024;21(1):97-103
Objective:
Practical applications of nerve decompression using neurosurgical robots remain unexplored. Our ongoing research and development initiatives, utilizing industrial robots, aim to establish a secure and efficient neurosurgical robotic system. The principal objective of this study was to automate bone grinding, which is a pivotal component of neurosurgical procedures.
Methods:
To achieve this goal, we integrated an endoscope system into a manipulator and conducted precision bone machining using a neurosurgical drill, recording the grinding resistance values across 3 axes. Our study encompassed 2 core tasks: linear grinding, such as laminectomy, and cylindrical grinding, such as foraminotomy, with each task yielding unique measurement data.
Results:
In linear grinding, we observed a proportional increase in grinding resistance values in the machining direction with acceleration. This observation suggests that 3-axis resistance measurements are a valuable tool for gauging and predicting deep cortical penetration. However, problems occurred in cylindrical grinding, and a significant error of 10% was detected. The analysis revealed that multiple factors, including the tool tip efficiency, machining speed, teaching methods, and deflection in the robot arm and jig joints, contributed to this error.
Conclusion
We successfully measured the resistance exerted on the tool tip during bone machining with a robotic arm across 3 axes. The resistance ranged from 3 to 8 Nm, with the measurement conducted at a processing speed approximately twice that of manual surgery performed by a surgeon. During the simulation of foraminotomy under endoscopic grinding conditions, we encountered a -10% error margin.
6.Advancements and Challenges in Robot-Assisted Bone Processing in Neurosurgical Procedures
Yoshihiro KITAHAMA ; Hiroo SHIZUKA ; Yuto NAKANO ; Yukoh OHARA ; Jun MUTO ; Shuntaro TSUCHIDA ; Daisuke MOTOYAMA ; Hideaki MIYAKE ; Katsuhiko SAKAI
Neurospine 2024;21(1):97-103
Objective:
Practical applications of nerve decompression using neurosurgical robots remain unexplored. Our ongoing research and development initiatives, utilizing industrial robots, aim to establish a secure and efficient neurosurgical robotic system. The principal objective of this study was to automate bone grinding, which is a pivotal component of neurosurgical procedures.
Methods:
To achieve this goal, we integrated an endoscope system into a manipulator and conducted precision bone machining using a neurosurgical drill, recording the grinding resistance values across 3 axes. Our study encompassed 2 core tasks: linear grinding, such as laminectomy, and cylindrical grinding, such as foraminotomy, with each task yielding unique measurement data.
Results:
In linear grinding, we observed a proportional increase in grinding resistance values in the machining direction with acceleration. This observation suggests that 3-axis resistance measurements are a valuable tool for gauging and predicting deep cortical penetration. However, problems occurred in cylindrical grinding, and a significant error of 10% was detected. The analysis revealed that multiple factors, including the tool tip efficiency, machining speed, teaching methods, and deflection in the robot arm and jig joints, contributed to this error.
Conclusion
We successfully measured the resistance exerted on the tool tip during bone machining with a robotic arm across 3 axes. The resistance ranged from 3 to 8 Nm, with the measurement conducted at a processing speed approximately twice that of manual surgery performed by a surgeon. During the simulation of foraminotomy under endoscopic grinding conditions, we encountered a -10% error margin.
7.Advancements and Challenges in Robot-Assisted Bone Processing in Neurosurgical Procedures
Yoshihiro KITAHAMA ; Hiroo SHIZUKA ; Yuto NAKANO ; Yukoh OHARA ; Jun MUTO ; Shuntaro TSUCHIDA ; Daisuke MOTOYAMA ; Hideaki MIYAKE ; Katsuhiko SAKAI
Neurospine 2024;21(1):97-103
Objective:
Practical applications of nerve decompression using neurosurgical robots remain unexplored. Our ongoing research and development initiatives, utilizing industrial robots, aim to establish a secure and efficient neurosurgical robotic system. The principal objective of this study was to automate bone grinding, which is a pivotal component of neurosurgical procedures.
Methods:
To achieve this goal, we integrated an endoscope system into a manipulator and conducted precision bone machining using a neurosurgical drill, recording the grinding resistance values across 3 axes. Our study encompassed 2 core tasks: linear grinding, such as laminectomy, and cylindrical grinding, such as foraminotomy, with each task yielding unique measurement data.
Results:
In linear grinding, we observed a proportional increase in grinding resistance values in the machining direction with acceleration. This observation suggests that 3-axis resistance measurements are a valuable tool for gauging and predicting deep cortical penetration. However, problems occurred in cylindrical grinding, and a significant error of 10% was detected. The analysis revealed that multiple factors, including the tool tip efficiency, machining speed, teaching methods, and deflection in the robot arm and jig joints, contributed to this error.
Conclusion
We successfully measured the resistance exerted on the tool tip during bone machining with a robotic arm across 3 axes. The resistance ranged from 3 to 8 Nm, with the measurement conducted at a processing speed approximately twice that of manual surgery performed by a surgeon. During the simulation of foraminotomy under endoscopic grinding conditions, we encountered a -10% error margin.
8.Advancements and Challenges in Robot-Assisted Bone Processing in Neurosurgical Procedures
Yoshihiro KITAHAMA ; Hiroo SHIZUKA ; Yuto NAKANO ; Yukoh OHARA ; Jun MUTO ; Shuntaro TSUCHIDA ; Daisuke MOTOYAMA ; Hideaki MIYAKE ; Katsuhiko SAKAI
Neurospine 2024;21(1):97-103
Objective:
Practical applications of nerve decompression using neurosurgical robots remain unexplored. Our ongoing research and development initiatives, utilizing industrial robots, aim to establish a secure and efficient neurosurgical robotic system. The principal objective of this study was to automate bone grinding, which is a pivotal component of neurosurgical procedures.
Methods:
To achieve this goal, we integrated an endoscope system into a manipulator and conducted precision bone machining using a neurosurgical drill, recording the grinding resistance values across 3 axes. Our study encompassed 2 core tasks: linear grinding, such as laminectomy, and cylindrical grinding, such as foraminotomy, with each task yielding unique measurement data.
Results:
In linear grinding, we observed a proportional increase in grinding resistance values in the machining direction with acceleration. This observation suggests that 3-axis resistance measurements are a valuable tool for gauging and predicting deep cortical penetration. However, problems occurred in cylindrical grinding, and a significant error of 10% was detected. The analysis revealed that multiple factors, including the tool tip efficiency, machining speed, teaching methods, and deflection in the robot arm and jig joints, contributed to this error.
Conclusion
We successfully measured the resistance exerted on the tool tip during bone machining with a robotic arm across 3 axes. The resistance ranged from 3 to 8 Nm, with the measurement conducted at a processing speed approximately twice that of manual surgery performed by a surgeon. During the simulation of foraminotomy under endoscopic grinding conditions, we encountered a -10% error margin.
9.Evaluation of the mechanical properties of current biliary self-expandable metallic stents: axial and radial force, and axial force zero border
Wataru YAMAGATA ; Toshio FUJISAWA ; Takashi SASAKI ; Rei ISHIBASHI ; Tomotaka SAITO ; Shuntaro YOSHIDA ; Shizuka NO ; Kouta INOUE ; Yousuke NAKAI ; Naoki SASAHIRA ; Hiroyuki ISAYAMA
Clinical Endoscopy 2023;56(5):633-649
Background/Aims:
Mechanical properties (MPs) and axial and radial force (AF and RF) may influence the efficacy and complications of self-expandable metallic stent (SEMS) placement. We measured the MPs of various SEMSs and examined their influence on the SEMS clinical ability.
Methods:
We evaluated the MPs of 29 types of 10-mm SEMSs. RF was measured using a conventional measurement device. AF was measured using the conventional and new methods, and the correlation between the methods was evaluated.
Results:
A high correlation in AFs was observed, as measured by the new and conventional manual methods. AF and RF scatterplots divided the SEMSs into three subgroups according to structure: hook-and-cross-type (low AF and RF), cross-type (high AF and low RF), and laser-cut-type (intermediate AF and high RF). The hook-and-cross-type had the largest axial force zero border (>20°), followed by the laser-cut and cross types.
Conclusions
MPs were related to stent structure. Hook-and-cross-type SEMSs had a low AF and high axial force zero border and were considered safest because they caused minimal stress on the biliary wall. However, the increase in RF must be overcome.
10.Two Cases of Plantar Keratosis Successfully Improved by Intake of Food Containing Hot Water Extract of Coix lacryma-jobi L. var. ma-yuen Stapf with Husks
Shizuka UEHARA ; Mitsuru YOSHIDA
Japanese Journal of Complementary and Alternative Medicine 2023;20(1):25-28
We reported 2 cases of plantar keratosis (59 years of age, female/39 years of age, male) successfully improved by intake of hot water extract of Coix lacryma-jobi L. var. ma-yuen Stapf with Husks. Both subjects were administered coix seed extract containing food for 20 weeks. The lesions improved gradually after 12 weeks, and almost cured by 20 weeks of administration. Although the food seemed to be effective in these cases, further studies are needed to define the optimal dose and duration.


Result Analysis
Print
Save
E-mail