1.Effect of Anmeidan on Cognitive Function and Metabolic Profiling in Insomnia Model Rats Based on Untargeted Metabolomics
Feizhou LI ; Bo XU ; Zijing YE ; Lianyu LI ; Andong ZHANG ; Ping WANG ; Linlin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):54-64
ObjectiveTo elucidate the potential mechanisms by which the classic prescription Anmeidan alleviates cognitive impairment in insomnia model rats through metabolic profiling. MethodsA total of 60 SD rats were randomly divided into six groups: blank group, model group, low-, medium-, and high-dose Anmeidan groups, and the Suvorexant group, with 10 rats in each group. Except for the blank group, the insomnia model was established in all other groups via intraperitoneal injection of para-chlorophenylalanine. The Suvorexant group was administered Suvorexant solution (30 mg·kg-1·d-1) by gavage, while the low-, medium-, and high-dose Anmeidan groups received Anmeidan decoction (4.55, 9.09, 18.18 g·kg-1·d-1) by gavage. The blank group received an equivalent volume of normal saline. The open field test was used to assess spatial exploration and anxiety/depressive-like behaviors in rats. Serum levels of epidermal growth factor (EGF), brain-derived neurotrophic factor (BDNF), and vasoactive intestinal peptide (VIP) were measured using enzyme-linked immunosorbent assay (ELISA). Untargeted metabolomics was employed to identify differential metabolites in rat serum, and systematic biological methods were applied to analyze the potential targets and pathways of Anmeidan. ResultsCompared to the blank group, the model group exhibited significant reductions in total distance traveled, average speed, number of entries into the central area, time spent in the central area, and frequency of upright events (P<0.01), along with significant decreases in VIP, EGF, and BDNF levels (P<0.05,P<0.01). A total of 100 differential metabolites were identified between the model and blank groups. Compared to the model group, the low-, medium-, and high-dose Anmeidan groups showed significant increases in total distance traveled, average speed, number of entries into the central area, time spent in the central area, and frequency of upright events (P<0.05,P<0.01), as well as a significant increase in VIP levels (P<0.05,P<0.01). Anmeidan significantly reversed abnormal changes in 67 metabolites compared to the model group. A combined analysis identified 134 potential targets of Anmeidan, with network topology analysis suggesting that Caspase-3, B-cell lymphoma 2 (Bcl-2), nuclear transcription factor-κB (NF-κB), interleukin-1β (IL-1β), interleukin-2 (IL-2), matrix metalloproteinase-9 (MMP-9), and Toll-like receptor 4 (TLR4), among others, may serve as key targets of Anmeidan. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed major enriched pathways, including the cyclic adenosine monophosphate (cAMP) signaling pathway, hypoxia inducible factor-1 (HIF-1) signaling pathway, and IL-17 signaling pathway. ConclusionThis study demonstrates that Anmeidan can recalibrate abnormal metabolic profiles in insomnia model rats to mitigate cognitive impairment, with its mechanisms of action potentially involving the regulation of immune-inflammatory responses, energy metabolism, and apoptosis-related pathways.
2.Strategic thinking on management of cross-boundary imported schistosomiasis
Jing XU ; Shizhen LI ; Qin LI ; Suying GUO ; Shizhu LI ; Xiaonong ZHOU
Chinese Journal of Schistosomiasis Control 2025;37(2):107-111
Schistosomiasis is prevalent in 78 countries and territories worldwide, while the eastern and western parts of sub-Sahara Africa bear the highest disease burden due to schistosomiasis. Recently, climate change, international trade and travel, urbanization and war have increased the risk of cross-boundary importation and transmission of schistosomiasis, and schistosomiasis has increasingly become a public health concern in non-endemic countries and territories. Biomphalaria straminea, the intermediate host of Schistosoma mansoni, has colonized in southern China and its habitats continue to move northward. In addition, cross-boundary imported cases of schistosomiasis have been reported occasionally in China. However, the real number of cases may be underestimated greatly due to insufficient diagnostic capacity and weak awareness of case reporting for overseas imported schistosomiasis in healthcare facilities. It is necessary to establish a multi-party collaborative mechanism, improve corresponding systems and technical specifications, reinforce surveillance and early warning, and border management, enhance technical reserves and capability building, and improve the awareness of schistosomiasis prevention and healthcare-seeking among entry-exit personnel, in order to effectively address the threat of cross-boundary imported schistosomiasis.
3.Effect and mechanism of Jingangteng capsules in the treatment of non-alcoholic fatty liver disease based on gut microbiota and metabolomics
Shiyuan CHENG ; Yue XIONG ; Dandan ZHANG ; Jing LI ; Zhiying SUN ; Jiaying TIAN ; Li SHEN ; Yue SHEN ; Dan LIU ; Qiong WEI ; Xiaochuan YE
China Pharmacy 2025;36(11):1340-1347
OBJECTIVE To investigate the effect and mechanism of Jingangteng capsules in the treatment of non-alcoholic fatty liver disease (NAFLD). METHODS Thirty-two SD rats were randomly divided into normal group and modeling group. The modeling group was fed a high-fat diet to establish a NAFLD model. The successfully modeled rats were then randomly divided into model group, atorvastatin group[positive control, 2 mg/(kg·d)], and Jingangteng capsules low- and high-dose groups [0.63 and 2.52 mg/(kg·d)], with 6 rats in each group. The pathological changes of the liver were observed by hematoxylin-eosin staining and oil red O staining. Enzyme-linked immunosorbent assay was performed to determine the serum levels of triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT), aspartate transaminase (AST), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-18. 16S rDNA amplicon sequencing and metabolomics techniques were applied to explore the effects of Jingangteng capsules on gut microbiota and metabolisms in NAFLD rats. Based on the E-mail:591146765@qq.com metabolomics results, Western blot analysis was performed to detect proteins related to the nuclear factor kappa-B (NF-κB)/NOD-like receptor family protein 3 (NLRP3) signaling pathway in the livers of NAFLD rats. RESULTS The experimental results showed that Jingangteng capsules could significantly reduce the serum levels of TG, TC, LDL-C, AST, ALT, TNF-α, IL-1β, IL-6, IL-18, while increased the level of HDL-C, and alleviated the hepatic cellular steatosis and inflammatory infiltration in NAFLD rats. They could regulate the gut microbiota disorders in NAFLD rats, significantly increased the relative abundance of Romboutsia and Oscillospira, and significantly decreased the relative abundance of Blautia (P<0.05). They also regulated metabolic disorders primarily by affecting secondary bile acid biosynthesis, fatty acid degradation, O-antigen nucleotide sugar biosynthesis, etc. Results of Western blot assay showed that they significantly reduced the phosphorylation levels of NF-κB p65 and NF-κB inhibitor α, and the protein expression levels of NLRP3, caspase-1 and ASC (P<0.05 or P<0.01). CONCLUSIONS Jingangteng capsules could improve inflammation, lipid accumulation and liver injury in NAFLD rats, regulate the disorders of gut microbiota and metabolisms, and inhibit NF-κB/NLRP3 signaling pathway. Their therapeutic effects against NAFLD are mediated through the inhibition of the NF-κB/NLRP3 signaling pathway.
4.Progress of schistosomiasis control in the People’s Republic of China in 2024
Junyi HE ; Lijuan ZHANG ; Fan YANG ; Hui DANG ; Yinlong LI ; Suying GUO ; Shizhen LI ; Chunli CAO ; Jing XU ; Shizhu LI
Chinese Journal of Schistosomiasis Control 2025;37(3):223-231
To understand the progress of, summarize the lessons learned from and analyze the challenges in the national schistosomiasis elimination program of China in 2024, this article presented the endemic situation of schistosomiasis and national schistosomiasis surveillance results in the People’s Republic of China in 2024. By the end of 2024, Shanghai Municipality, Zhejiang Province, Fujian Province, Guangdong Province and Guangxi Zhuang Autonomous Region continued to consolidate schistosomiasis elimination achievements, and 7 provinces of Jiangsu, Sichuan, Yunnan, Hubei, Hunan, Anhui and Jiangxi maintained the criteria of schistosomiasis transmission interruption. A total of 450 counties (cites, districts) were found to be endemic for schistosomiasis in China in 2024, including 26 061 endemic villages covering 73 630 500 residents at risk of infections. Among the 450 counties (cities, districts) endemic for schistosomiasis, 388 (86.22%) achieved the criteria of schistosomiasis elimination and 62 (13.78%) achieved the criteria of transmission interruption. In 2024, a total of 4 102 624 individuals received immunological tests for schistosomiasis in China, with 44 823 sero-positives identified (1.09% seroprevalence), and a total of 169 722 individuals received parasitological examinations, with 1 egg-positives detected. A total of 27 321 cases with advanced schistosomiasis were documented in China by the end of 2024. In 2024, a total of 575 686 bovines were raised in schistosomiasis-endemic villages of China, and 113 842 bovines received immunological tests, with 235 sero-positives detected (0.21% seroprevalence), while no egg-positives were identified among the 167 475 bovines receiving parasitological examinations. In 2024, snail survey was performed covering an area of 680 498.27 hm2 in China, and 190 778.66 hm2 snail habitats were identified, including 59.09 hm2 emerging snail habitats and 704.23 hm2 reemerging snail habitats. In 2024, a total of 19 665 schistosomiasis patients receiving chemotherapy with praziquantel in China, and expanded chemotherapy was given to humans at 571 722 person-times and to bovines at 306 740 herd-times. In addition, snail control with chemical treatment covered 117 111.37 hm2 snail habitats across China in 2024, and the actual area of chemical treatment was 66 562.95 hm2, while environmental improvements were performed in snail habitats covering an area of 1 374.26 hm2. The national schistosomiasis surveillance results showed that the mean prevalence rates of Schistosoma japonicum infections were both 0 among humans and bovines in China in 2024, and no S. japonicum infection was detected in snails. These data demonstrated that the prevalence of schistosomiasis remained at a low level in China in 2024; however, the areas of snail habitats remained high and the number of fenced cattle showed a slight increase. To address these risks, it is imperative to maintain the integrated strategy with an emphasis on management of the source of S. japonicum infection and intensified snail control in high-risk areas, and to reinforce schistosomiasis surveillance and forecast and snail control in high-risk areas.
5.Preparation and characterization of RGD modified “core-shell”nanoparticles loaded with doxorubicin and study on their anti-tumor effects
Qingling LI ; Jinguang LIU ; Qi ZU ; Qinglong YU ; Shizhen SUN
China Pharmacy 2025;36(16):2017-2023
OBJECTIVE To prepare Arg-Gly-Asp(RGD)-modified doxorubicin (DOX)-loaded “core-shell” nanoparticles (RGD@DOX-LPNs), characterize the nanoparticles, and investigate their antitumor effects. METHODS RGD@DOX-LPNs were prepared using the nanoprecipitation method. Their morphology was examined by visual inspection and electron microscopy. Particle size, polydispersity index (PDI), and Zeta potential were determined, and differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were employed. Encapsulation efficiency (EE), drug loading (DL), and stability were evaluated. The in vitro release kinetics, mucus diffusion, and tumor cell uptake [tracked using coumarin 6 (COU)] were investigated. The in vivo tissue distribution and gastrointestinal retention [labeled with 11-chloro-1, 1′-dipropyl-3, 3, 3′, 3′-tetramethyl-10, 12- trimethyleneindotricarbocyanine iodide (IR780)] were investigated. Using 4T1 tumor-bearing mice as the experimental subjects, the effects of the prepared formulation on tumor volume, tumor weight, and cell apoptosis rate were evaluated. RESULTS RGD@DOX-LPNs presented as orange transparent liquid with uniform and near-spherical particles. The particle size was (159.67± 8.02) nm, PDI was 0.15±0.06, and Zeta potential was (-19.70±0.79) mV. After modification with RGD, the thermal absorption peak and crystalline diffraction peak of DOX disappeared. EE and DL of RGD@DOX-LPNs were (72.65±4.37)% and (4.62± 0.38)% , respectively. No obvious changes in appearance, particle size, or EE were observed after storage at 4 ℃ and 25 ℃ for 7 days. The cumulative drug release at 4 h was approximately 73%, which was lower than that of free DOX(almost completely released within 1 h). The amount of COU in the first segmental mucus layer of COU-LPNs was significantly lower than that in the corresponding segment of RGD@COU- LPNs, whereas it was significantly higher in the 2nd to 5th segmental mucus layers compared to RGD@COU-LPNs (P<0.01). Cellular uptake of RGD@COU-LPNs was significantly higher than that of COU-LPNs(P<0.05). The isolated tissue fluorescence intensity of RGD@IR780-LPNs was stronger than that of IR780-LPNs, indicating better small intestinal retention. Compared with free DOX and unmodified nanoparticles (DOX-LPNs), RGD@DOX-LPNs exhibited a higher tumor inhibition rate of 65.74%, significantly reduced tumor volume and weight, and increased apoptosis rate(P<0.01). CONCLUSIONS RGD@DOX-LPNs are successfully prepared with sustained release properties, which can improve gastrointestinal mucus retention, enhance cellular uptake of DOX, and have potent antitumor activity against breast cancer.
6.Sishenwan Restores Intestinal Barrier in Rat Model of Diarrhea-predominant Irritable Bowel Syndrome Due to Spleen-kidney Yang Deficiency by Regulating Intestinal Flora and Short-chain Fatty Acids
Qian ZHANG ; Siqi LI ; HUYUNLIAN ; Na WEN ; Chaoqun HUANG ; Binbin LIU ; Chengxia SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):80-89
ObjectiveTo investigate the effect and mechanism of Sishenwan in restoring the intestinal barrier function in the rat model of diarrhea-predominant irritable bowel syndrome (IBS-D) due to spleen-kidney Yang deficiency based on intestinal flora and short-chain fatty acids. MethodsAfter the delivery of 10 SPF-grade pregnant rats, 4 male suckling rats were kept in each litter for the experiment. The male suckling rats were randomly allocated into blank, model, low-dose (3.51 g·kg-1) Sishenwan, high-dose (7.02 g·kg-1) Sishenwan, and Peifeikang (0.54 g·kg-1) groups, with 8 rats in each group. The blank group was fed conventionally, and the other groups were subjected to mother-child separation and Sennae Folium gavage (1 g·mL-1, 10 mL·kg-1) for the modeling of IBS-D due to spleen-kidney Yang deficiency. After the modeling was completed, the rats in Sishenwan groups were administrated with the corresponding dose of Sishenwan decoction by gavage, and the Peifeikang group with bifidobacterium triple live powder+normal saline suspension. The blank and model groups were treated with an equal volume of normal saline by gavage. The general conditions and fecal characteristics of rats were observed. After 2 weeks of administration, the rats were anesthetized for sample collection. The pathological changes of the colon tissue in rats were observed by hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was employed to measure the levels of transforming growth factor-beta (TGF-β), interleukin-10 (IL-10), and interleukin-22 (IL-22). Immumohistochemical staining (IHC) was performed to detect the positive expression of zonula occludens-1 (ZO-1) and occludin in the colon tissue. Western blot was employed to determine the protein levels of ZO-1 and occludin in the colon tissue of rats, and 16S rRNA gene sequencing was performed for intestinal flora. Gas chromatography-mass spectrometry was employed to determine the content of short-chain fatty acids (SCFAs) in the cecum contents of rats. ResultsThe colon tissue in the blank group presented a clear structure, neat glands, and no inflammatory cell infiltration. In the model group, the colon tissue showcased a disorganized structure, irregular arrangement of glands, and inflammatory cell infiltration. Compared with the model group, the low-dose and high-dose Sishenwan groups and the Peifeikang group exhibited an intact colon tissue structure, regular arrangement of glands, and reduced inflammatory cell infiltration. Compared with the blank group, the modeling lowered the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.01), down-regulated the protein levels of ZO-1 and occludin in the colon tissue (P<0.01), and decreased the content of acetic acid and propionic acid and increased the content of butyric acid in cecum contents (P<0.05). Compared with the model group, low-dose and high-dose Sishenwan raised the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.05, P<0.01), and Peifeikang elevated the levels of TGF-β and IL-10 in the serum (P<0.01). High-dose Sishenwan and Peifeikang up-regulated the protein levels of ZO-1 and occludin (P<0.05, P<0.01), increased the content of acetic acid and propionic acid in cecum contents (P<0.05), and decreased the content of butyric acid (P<0.05). The 16S rRNA gene sequencing results showed that the intestinal flora structure of the model group changed compared with that of the blank group. Compared with the model group, Sishenwan and Peifeikang increased the relative abundance of Lachnospiraceae, Muribaculaceae, Akkermansiaceae, Ligilactobacillus, UBA3282, Akkermansia, and Corynebacterium while reducing the relative abundance of Oscillospiraceae, Desulfovibrionaceae, Lactobacillus, Romboutsia, and Desulfovibrio. They can restore the intestinal flora structure similar to that in the blank group. ConclusionSishenwan can alleviate diarrhea symptoms and colonic mucosal inflammation, increase the expression of tight junction proteins in the colonic mucosa, and strengthen the intestinal barrier in IBS-D rats with the syndrome of spleen-kidney Yang deficiency. The mechanism of action may be related to optimizing the structure and balance of intestinal flora and regulating the SCFAs, and the effect of high-dose Sishenwan is obvious.
7.Sishenwan Restores Intestinal Barrier in Rat Model of Diarrhea-predominant Irritable Bowel Syndrome Due to Spleen-kidney Yang Deficiency by Regulating Intestinal Flora and Short-chain Fatty Acids
Qian ZHANG ; Siqi LI ; HUYUNLIAN ; Na WEN ; Chaoqun HUANG ; Binbin LIU ; Chengxia SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):80-89
ObjectiveTo investigate the effect and mechanism of Sishenwan in restoring the intestinal barrier function in the rat model of diarrhea-predominant irritable bowel syndrome (IBS-D) due to spleen-kidney Yang deficiency based on intestinal flora and short-chain fatty acids. MethodsAfter the delivery of 10 SPF-grade pregnant rats, 4 male suckling rats were kept in each litter for the experiment. The male suckling rats were randomly allocated into blank, model, low-dose (3.51 g·kg-1) Sishenwan, high-dose (7.02 g·kg-1) Sishenwan, and Peifeikang (0.54 g·kg-1) groups, with 8 rats in each group. The blank group was fed conventionally, and the other groups were subjected to mother-child separation and Sennae Folium gavage (1 g·mL-1, 10 mL·kg-1) for the modeling of IBS-D due to spleen-kidney Yang deficiency. After the modeling was completed, the rats in Sishenwan groups were administrated with the corresponding dose of Sishenwan decoction by gavage, and the Peifeikang group with bifidobacterium triple live powder+normal saline suspension. The blank and model groups were treated with an equal volume of normal saline by gavage. The general conditions and fecal characteristics of rats were observed. After 2 weeks of administration, the rats were anesthetized for sample collection. The pathological changes of the colon tissue in rats were observed by hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was employed to measure the levels of transforming growth factor-beta (TGF-β), interleukin-10 (IL-10), and interleukin-22 (IL-22). Immumohistochemical staining (IHC) was performed to detect the positive expression of zonula occludens-1 (ZO-1) and occludin in the colon tissue. Western blot was employed to determine the protein levels of ZO-1 and occludin in the colon tissue of rats, and 16S rRNA gene sequencing was performed for intestinal flora. Gas chromatography-mass spectrometry was employed to determine the content of short-chain fatty acids (SCFAs) in the cecum contents of rats. ResultsThe colon tissue in the blank group presented a clear structure, neat glands, and no inflammatory cell infiltration. In the model group, the colon tissue showcased a disorganized structure, irregular arrangement of glands, and inflammatory cell infiltration. Compared with the model group, the low-dose and high-dose Sishenwan groups and the Peifeikang group exhibited an intact colon tissue structure, regular arrangement of glands, and reduced inflammatory cell infiltration. Compared with the blank group, the modeling lowered the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.01), down-regulated the protein levels of ZO-1 and occludin in the colon tissue (P<0.01), and decreased the content of acetic acid and propionic acid and increased the content of butyric acid in cecum contents (P<0.05). Compared with the model group, low-dose and high-dose Sishenwan raised the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.05, P<0.01), and Peifeikang elevated the levels of TGF-β and IL-10 in the serum (P<0.01). High-dose Sishenwan and Peifeikang up-regulated the protein levels of ZO-1 and occludin (P<0.05, P<0.01), increased the content of acetic acid and propionic acid in cecum contents (P<0.05), and decreased the content of butyric acid (P<0.05). The 16S rRNA gene sequencing results showed that the intestinal flora structure of the model group changed compared with that of the blank group. Compared with the model group, Sishenwan and Peifeikang increased the relative abundance of Lachnospiraceae, Muribaculaceae, Akkermansiaceae, Ligilactobacillus, UBA3282, Akkermansia, and Corynebacterium while reducing the relative abundance of Oscillospiraceae, Desulfovibrionaceae, Lactobacillus, Romboutsia, and Desulfovibrio. They can restore the intestinal flora structure similar to that in the blank group. ConclusionSishenwan can alleviate diarrhea symptoms and colonic mucosal inflammation, increase the expression of tight junction proteins in the colonic mucosa, and strengthen the intestinal barrier in IBS-D rats with the syndrome of spleen-kidney Yang deficiency. The mechanism of action may be related to optimizing the structure and balance of intestinal flora and regulating the SCFAs, and the effect of high-dose Sishenwan is obvious.
8.Capacity building in schistosomiasis control institutions in China: a cross-sectional study
Junyi HE ; Shizhen LI ; Wangping DENG ; Chunli CAO ; Shizhu LI ; Jing XU
Chinese Journal of Schistosomiasis Control 2024;36(1):67-73
Objective To understand the current status of capacity building in schistosomiasis control institutes in schistosomiasis-endemic provinces (municipality, autonomous region) of China. Methods The responsibilities and construction requirements of various schistosomiasis control institutions were surveyed by expert discussions, and field interviews and visits during the period between May and June, 2023, and the questionnaire for capacity maintenance and consolidation in schistosomiasis control institutions was designed. An online questionnaire survey was conducted in county-, municipal-, and provincial-level institutions that undertook schistosomiasis control and surveillance activities through the Wenjuanxing program. The distribution of schistosomiasis control institutions, the status of institutions, departments and staff undertaking schistosomiasis control activities and the translation of scientific researches on schistosomiasis control in China were analyzed. The laboratories accredited by China National Accreditation Service for Conformity Assessment (CNAS) were considered to be capable for testing associated with schistosomiasis control, and the testing capability of schistosomiasis control institutions was analyzed. Results A total of 486 valid questionnaires were recovered from 486 schistosomiasis control institutions in 12 endemic provinces (municipality, autonomous region) of China, including 12 provincial-level institutions (2.5%), 77 municipal-level institutions (15.8%) and 397 county-level institutions (81.7%). Of all schistosomiasis control institutions, 376 (77.4%) were centers for disease control and prevention or public health centers, 102 (21.0%) were institutions for schistosomiasis, endemic disease and parasitic disease control, and 8 (1.6%) were hospitals, healthcare centers or others. There were 37 713 active employees in the 486 schistosomiasis control institutions, including 5 675 employees related to schistosomiasis control, and the proportions of employees associated with schistosomiasis control among all active employees were 5.9% (231/3 897), 5.5% (566/10 134), and 20.6% (4 878/23 682) in provincial-, municipal-, and county-level institutions, respectively. There were 3 826 full-time employees working in schistosomiasis control activities, with 30.5% (1 166/3 826), 34.6% (1 324) and 34.9% (1 336/3 826) at ages of 40 years and below, 41 to 50 years and over 50 years, and there were 1 571 (41.0%) full-time schistosomiasis control employees with duration of schistosomiasis control activities for over 25 years, and 1 358 (35.5%) employees with junior professional titles and 1 290 with intermediate professional titles (35.5%), while 712 (18.6%) full-time employees working in schistosomiasis control activities had no professional titles. The three core schistosomiasis control activities included snail control (26.3%, 374/1 420), epidemics surveillance and management (25.4%, 361/1 420) and health education (18.8%, 267/1 420) in schistosomiasis control institutions. The Kato-Katz method, miracidium hatching test with nylon gauzes, and indirect haemagglutination assay (IHA) were the most commonly used techniques for detection of schistosomiasis, and there were less than 50% laboratories that had capabilities or experimental conditions for performing enzyme-linked immunosorbent assay (ELISA), dipstick dye immunoassay (DDIA), dot immunogold filtration assay (DIG-FA), loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assays. During the period from 2018 to 2022, schistosomiasis control institutions had undertaken a total of 211 research projects for schistosomiasis control, with a total funding of 18.596 million RMB, published 619 articles, participated in formulation of 13 schistosomiasis control-related criteria, and applied for 113 schistosomiasis control-related patents, including 101 that were granted, and commercialized 4 scientific research outcomes. Conclusions The proportion of independent specialized schistosomiasis control institutions is low in schistosomiasis control institutions in China, which suffers from problems of unsatisfactory laboratory testing capabilities, aging of staff and a high proportion of low-level professional titles. More investment into and intensified schistosomiasis control activities and improved capability building and talent cultivation in schistosomiasis control institutions are recommended to provide a powerful support for high-quality elimination of schistosomiasis in China.
9.Mechanism of Modified Tianwang Buxindan on Skin of Sleep-deprived Mice Through PI3K/Akt/Nrf2 Signaling Pathway
Juanping CHEN ; Yuan PENG ; Xuemin HONG ; Li YANG ; Bo XU ; Chong ZHANG ; Xuelin GUO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):120-128
ObjectiveTo observe the effect of modified Tianwang Buxindan (MTBD) on the skin of sleep-deprived (SD) mice and investigate its mechanism. MethodSixty 2-month-old female Kunming mice were randomly divided into a blank group, a model group, a vitamin C (VC, 0.08 g·kg-1), and MTBD low-, medium-, and high-dose groups (6.5, 12.5, 25 g·kg-1). Except for the blank group, the other groups were subjected to SD mouse model induction (using multiple platform water environment method for 18 hours of sleep deprivation daily from 15:00 to next day 9:00), continuously for 14 days, and caffeine (CAF, 7.5 mg·kg-1) was injected intraperitoneally from the 2nd week onwards, continuously for 7 days. While modeling, the blank group and the model group were administered with normal saline (0.01 mL·g-1), and the other groups received corresponding drugs for treatment. On the day of the experiment, general observations were recorded (such as body weight, spirit, fur, and skin). After sampling, skin tissue pathological changes were observed under an optical microscope using hematoxylin-eosin (HE) and Masson staining methods. Skin thickness and skin moisture content were measured. Biochemical assay kits were used to detect skin hydroxyproline (HYP) content, skin and serum superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β levels in mice. Western blot was used to detect skin tissue type Ⅰ collagen (ColⅠ), type Ⅲ collagen (ColⅢ), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-PI3K, protein kinase B (Akt), p-Akt, nuclear factor E2-related factor 2 (Nrf2), heme oxygenase (HO)-1, and nuclear factor (NF)-κB protein expression. ResultCompared with the blank group, the model group showed varying degrees of changes. In general, signs of aging such as reduced body weight (P<0.01), listlessness, dull fur color, and formation of wrinkles on the skin appeared. Tissue specimen testing revealed skin thinning, flattening of the dermoepidermal junction (DEJ), and reduced collagen fibers under the optical microscope. Skin thickness and moisture content decreased, skin tissue HYP content significantly decreased (P<0.01), skin and serum SOD activity significantly decreased (P<0.01), and MDA content significantly increased (P<0.01). Serum IL-6, TNF-α, and IL-1β levels significantly increased (P<0.01). Skin ColⅠ, ColⅢ, p-PI3K/PI3K, p-Akt/Akt, Nrf2, and HO-1 protein expression significantly decreased (P<0.05, P<0.01), and NF-κB expression increased (P<0.01). Compared with the model group, the VC group and the MTBD low-dose group showed increased skin moisture content, HYP content, SOD activity, and ColⅠ, ColⅢ, p-PI3K/PI3K protein expression (P<0.05, P<0.01), and decreased serum MDA content (P<0.05). In addition, a decrease in serum IL-6 and IL-1β levels was detected in the MTBD low-dose group (P<0.05), while the above indicators in the MTBD medium- and high-dose groups improved (P<0.05, P<0.01). ConclusionSleep deprivation accelerates the aging process of the skin in SD model mice. MTBD can improve this phenomenon, exerting anti-inflammatory and antioxidant effects, and its mechanism of action may be related to the activation of the PI3K/Akt/Nrf2 signaling pathway.
10.Sishenwan Ameliorates Visceral Sensitivity in Rat Model of Diarrhea-predominant Irritable Bowel Syndrome (Spleen-kidney Yang Deficiency) by Regulating p38 MAPK/JNK/TRPV1 Pathway
Siqi LI ; Yunlian HU ; Chengxia SU ; Min XIAO ; Xiaocui JIANG ; Na WEN ; Qian ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):10-18
ObjectiveTo investigate the effect and possible mechanism of Sishenwan in ameliorating visceral sensitivity in the rat model of diarrhea-predominant irritable bowel syndrome (IBS-D) due to spleen-kidney Yang deficiency. MethodForty male SPF-grade rats were randomly assigned into five groups: blank control, model, low- (3.51 g·kg-1) and high-dose (7.02 g·kg-1) Sishenwan, and Peifikang (0.54 g·kg-1) groups. Except the blank control group, the other groups underwent maternal separation stress and Sennae Folium decoction gavage for the modeling of IBS-D due to spleen-kidney Yang deficiency. After corresponding drug interventions, the general conditions of the rats were observed, and the number of defecation pellets within 6 h and the minimum threshold of abdominal withdrawal reflex (AWR) were measured. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum levels of tumor necrosis factor (TNF)-α, gastrin (GAS), corticosterone (CORT), and adrenocorticotropic hormone (ACTH). Hematoxylin-eosin (HE) staining was employed to observe pathological changes in the colon tissue. Toluidine blue staining was used to assess mast cell degranulation in the colon tissue. Western blot was performed to determine the protein levels of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), transient receptor potential vanilloid 1 (TRPV1), and protease-activated receptor 2 (PAR2) in the colon tissue. Immunohistochemistry was employed to measure the protein level of TRPV1 in the colon tissue, and immunofluorescence was used to detect the positive expression of substance P (SP) and calcitonin gene-related peptide (CGRP) in the colon tissue. ResultCompared with the blank control group, the model group showed increased number of defecation pellets within 6 h (P<0.01), decreased minimum threshold of AWR (P<0.01), elevated serum TNF-α level (P<0.01), lowered levels of GAS, CORT, and ACTH (P<0.05, P<0.01), increased mast cell degranulation rate (P<0.01), increased positive expression of TRPV1, SP, and CGRP (P<0.05, P<0.01), and upregulated protein levels of p38 MAPK, JNK, TRPV1, and PAR2 (P<0.01). Compared with the model group, the high-dose Sishenwan group showed increased minimum threshold of AWR (P<0.01), reduced defecation frequency in both the high-dose Sishenwan and Peifikang groups (P<0.05, P<0.01), lowered TNF-α level (P<0.05, P<0.01), elevated levels of GAS, CORT, and ACTH (P<0.05, P<0.01), decreased mast cell degranulation rate (P<0.01), reduced positive expression of TRPV1, SP, and CGRP (P<0.05, P<0.01), and downregulated protein levels of p38 MAPK, JNK, TRPV1, and PAR2 (P<0.05, P<0.01). ConclusionSishenwan can ameliorate visceral sensitivity in the rat model of diarrhea-predominant irritable bowel syndrome due to spleen-kidney Yang deficiency by regulating the p38 MAPK/JNK/TRPV1 signaling pathway.

Result Analysis
Print
Save
E-mail