1.Magnesium promotes vascularization and osseointegration in diabetic states.
Linfeng LIU ; Feiyu WANG ; Wei SONG ; Danting ZHANG ; Weimin LIN ; Qi YIN ; Qian WANG ; Hanwen LI ; Quan YUAN ; Shiwen ZHANG
International Journal of Oral Science 2024;16(1):10-10
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
Mice
;
Animals
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Magnesium/metabolism*
;
Osseointegration
;
Diabetes Mellitus, Experimental/metabolism*
;
Endothelial Cells/metabolism*
;
NF-E2-Related Factor 2/metabolism*
2.Improvement effects of poria acid on insulin resistance in rats with polycystic ovary syndrome and its mechanism
Hong TANG ; Linxia LI ; Yu HUA ; Xiaomei JIANG ; Shiwen ZHANG ; Jinrong FU
China Pharmacy 2024;35(1):57-62
OBJECTIVE To study the improvement effects of poria acid on insulin resistance in rats with polycystic ovary syndrome (PCOS) and its mechanism. METHODS One hundred and twenty-six female rats were randomly separated into blank group, PCOS group, poria acid low-dose group (8.33 mg/kg), pachymic acid high-dose group (33.32 mg/kg), ethinylestradiol cyproterone group (positive control group, 0.34 mg/kg), recombinant rat high mobility group protein B1 protein (rHMGB1) group (8 μg/kg), and poria acid high dose+rHMGB1 group (33.32 mg/kg poria acid+8 μg/kg rHMGB1), with 18 rats in each group. Except for the blank group, the rats in all other groups were given Letrozole suspension intragastrically to construct the PCOS model. After successful modeling, administration was performed once a day for 4 weeks. After medication, the fasting blood glucose and fasting insulin levels, and insulin resistance index (HOMA-IR) were measured in rats; the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone (T) in rat serum, and the levels of interleukin-1β (IL-1β) and tumor necrosis factor- α (TNF- α) in ovarian tissue were detected; ovarian coefficients of rats were calculated; the pathological changes of ovarian tissue were observed; the expressions of HMGB1, receptor for advanced glycosylation elaine_ tanghong@sina.com end product (RAGE) and phosphorylated nuclear factor κB p65 (p-NF-κB p65) proteins were determined in ovarian tissue of rats. RESULTS Compared with the blank group, the pathological injury of ovarian tissue of rats in the PCOS group was serious, the levels of fasting blood glucose and fasting insulin, HOMA-IR and ovarian coefficient were increased, the levels of serum LH and T were increased, while the levels of FSH were decreased; the levels of IL-1β and TNF-α, the expressions of HMGB1, RAGE and p-NF-κB p65 protein in ovarian tissue were increased, with statistical significance (P<0.05). Compared with the PCOS group, pathological damage of ovarian tissue was reduced in poria acid low-dose and high-dose groups and ethinylestradiol cyproterone group, and fasting blood glucose, fasting insulin levels, HOMA-IR and ovarian coefficient were decreased; serum LH and T levels were decreased, while FSH levels were increased; the levels of IL-1β and TNF-α and the expressions of HMGB1, RAGE and p-NF-κB p65 protein in ovarian tissue were decreased, with statistical significance (P<0.05). The trend of corresponding indexes in rHMGB1 group was opposite to the above (P<0.05). Compared with poria acid high-dose group, the changes of the above indexes were reversed significantly in poria acid high-dose+rHMGB1 group (P<0.05). CONCLUSIONS Poria acid may improve insulin resistance and inhibit inflammatory reaction in PCOS rats by inhibiting HMGB1/ RAGE pathway.
3.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
4.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
5.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
6.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
7.Prediction of target genes and establishment of related prognostic model for the treatment of glioblastoma with stigmasterol
Qiang ZHU ; Ruichun LI ; Shiwen GUO ; Chen LIANG
Journal of Xi'an Jiaotong University(Medical Sciences) 2024;45(6):909-917
[Objective] To predict potential target genes for the treatment of glioblastoma (GBM) with stigmasterol and construct a relevant prognostic model, in order to reveal its antiglioma mechanism and the role of these target genes in the prognosis of GBM patients. [Methods] Differential expression genes in GBM and stigmasterol target genes were obtained via online databases. Venn diagram was used to select potential target genes for stigmasterol treatment of GBM, and enrichment analysis was performed using R language. Univariate COX regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were made to select stigmasterol target genes related to the prognosis of GBM patients and construct a relevant prognostic model. Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting analyses were used to detect the effect of stigmasterol on the expressions of related target genes. [Results] In this study, a total of 31 potential target genes for the treatment of GBM with stigmasterol were identified. Enrichment analysis showed that these target genes were associated with the activation of the G protein coupled receptor (GPCR) signaling pathway and the regulation of lipid metabolism. Regression analysis identified two stigmasterol target genes, namely, fatty acid binding protein 5 (FABP5) and alpha 1B adrenergic receptor (ADRA1B), which are associated with the prognosis of GBM. A prognostic model constructed based on these two genes could accurately predict the prognosis of GBM patients. Finally, stigmasterol inhibited the expressions of these two genes in GBM cells (FABP5: t=9.909, P=0.001; ADRA1B: t=3.319, P=0.029). [Conclusion] Stigmasterol’s anti-tumor effect may be linked to its regulation of GPCR signaling pathways and lipid metabolism. By inhibiting the expressions of FABP5 and ADRA1B, stigmasterol could potentially enhance the prognosis for GBM patients. Additionally, a prognostic model based on the expression levels of FABP5 and ADRA1B can be valuable for predicting patient outcomes and monitoring therapeutic efficacy in GBM.
8.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
9.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
10.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.

Result Analysis
Print
Save
E-mail