1.Striated muscle fiber crossings of the head and neck: a histological study using near-term human fetuses and elderly cadavers
Ji Hyun KIM ; Kei KITAMURA ; Yohei HONKURA ; Gen MURAKAMI ; Shin-ichi ABE
Anatomy & Cell Biology 2024;57(4):570-578
		                        		
		                        			
		                        			 Striated muscle fiber crossings at almost right angle are known to exist in the face, soft palate, pharyngeal wall and tongue. We aimed to identify a specific interface tissue at the crossing. We observed histological sections from 22 halfheads of 12 near-term fetuses at 26–40 weeks (crown-rump length, 215–334 mm). For comparison, we also observed tongue frontal sections from 5 elderly cadavers (75–85 years old). At the angle of mouth as well as in the soft palate and pharyngeal wall, a solitary striated muscle fiber (e.g., levator) consistently crossed a fiber bundle of the antagonist muscle (e.g., depressor), but a solitary-to-solitary fiber interdigitation was unlikely with the antagonist muscle. Near the external nasal orifice as well as in the tongue intrinsic muscle layer, at every section, there was a crossing with an endomysium-to-endomysium contact:the nasalis and platysma muscles and; the vertical and transverse (or inferior longitudinal) tongue muscles. Therein, the functional vectors crossed at almost right angle. Also in adult tongue, the vertical and transverse muscle fibers sometimes (0–2 sites per section) crossed with an endomysium-to-endomysium contact. At the muscle crossing with an endomysium contact, the endomysium and basement membrane seemed to receive a friction stress between two muscles. Although some crossings might disappear due to high muscle activity after birth, not a few of them were likely to maintain. To minimize the mechanical stress, a minute nervous control of the timing, duration and strength of muscle contraction seemed to be necessary. 
		                        		
		                        		
		                        		
		                        	
2.Striated muscle fiber crossings of the head and neck: a histological study using near-term human fetuses and elderly cadavers
Ji Hyun KIM ; Kei KITAMURA ; Yohei HONKURA ; Gen MURAKAMI ; Shin-ichi ABE
Anatomy & Cell Biology 2024;57(4):570-578
		                        		
		                        			
		                        			 Striated muscle fiber crossings at almost right angle are known to exist in the face, soft palate, pharyngeal wall and tongue. We aimed to identify a specific interface tissue at the crossing. We observed histological sections from 22 halfheads of 12 near-term fetuses at 26–40 weeks (crown-rump length, 215–334 mm). For comparison, we also observed tongue frontal sections from 5 elderly cadavers (75–85 years old). At the angle of mouth as well as in the soft palate and pharyngeal wall, a solitary striated muscle fiber (e.g., levator) consistently crossed a fiber bundle of the antagonist muscle (e.g., depressor), but a solitary-to-solitary fiber interdigitation was unlikely with the antagonist muscle. Near the external nasal orifice as well as in the tongue intrinsic muscle layer, at every section, there was a crossing with an endomysium-to-endomysium contact:the nasalis and platysma muscles and; the vertical and transverse (or inferior longitudinal) tongue muscles. Therein, the functional vectors crossed at almost right angle. Also in adult tongue, the vertical and transverse muscle fibers sometimes (0–2 sites per section) crossed with an endomysium-to-endomysium contact. At the muscle crossing with an endomysium contact, the endomysium and basement membrane seemed to receive a friction stress between two muscles. Although some crossings might disappear due to high muscle activity after birth, not a few of them were likely to maintain. To minimize the mechanical stress, a minute nervous control of the timing, duration and strength of muscle contraction seemed to be necessary. 
		                        		
		                        		
		                        		
		                        	
3.Striated muscle fiber crossings of the head and neck: a histological study using near-term human fetuses and elderly cadavers
Ji Hyun KIM ; Kei KITAMURA ; Yohei HONKURA ; Gen MURAKAMI ; Shin-ichi ABE
Anatomy & Cell Biology 2024;57(4):570-578
		                        		
		                        			
		                        			 Striated muscle fiber crossings at almost right angle are known to exist in the face, soft palate, pharyngeal wall and tongue. We aimed to identify a specific interface tissue at the crossing. We observed histological sections from 22 halfheads of 12 near-term fetuses at 26–40 weeks (crown-rump length, 215–334 mm). For comparison, we also observed tongue frontal sections from 5 elderly cadavers (75–85 years old). At the angle of mouth as well as in the soft palate and pharyngeal wall, a solitary striated muscle fiber (e.g., levator) consistently crossed a fiber bundle of the antagonist muscle (e.g., depressor), but a solitary-to-solitary fiber interdigitation was unlikely with the antagonist muscle. Near the external nasal orifice as well as in the tongue intrinsic muscle layer, at every section, there was a crossing with an endomysium-to-endomysium contact:the nasalis and platysma muscles and; the vertical and transverse (or inferior longitudinal) tongue muscles. Therein, the functional vectors crossed at almost right angle. Also in adult tongue, the vertical and transverse muscle fibers sometimes (0–2 sites per section) crossed with an endomysium-to-endomysium contact. At the muscle crossing with an endomysium contact, the endomysium and basement membrane seemed to receive a friction stress between two muscles. Although some crossings might disappear due to high muscle activity after birth, not a few of them were likely to maintain. To minimize the mechanical stress, a minute nervous control of the timing, duration and strength of muscle contraction seemed to be necessary. 
		                        		
		                        		
		                        		
		                        	
4.Striated muscle fiber crossings of the head and neck: a histological study using near-term human fetuses and elderly cadavers
Ji Hyun KIM ; Kei KITAMURA ; Yohei HONKURA ; Gen MURAKAMI ; Shin-ichi ABE
Anatomy & Cell Biology 2024;57(4):570-578
		                        		
		                        			
		                        			 Striated muscle fiber crossings at almost right angle are known to exist in the face, soft palate, pharyngeal wall and tongue. We aimed to identify a specific interface tissue at the crossing. We observed histological sections from 22 halfheads of 12 near-term fetuses at 26–40 weeks (crown-rump length, 215–334 mm). For comparison, we also observed tongue frontal sections from 5 elderly cadavers (75–85 years old). At the angle of mouth as well as in the soft palate and pharyngeal wall, a solitary striated muscle fiber (e.g., levator) consistently crossed a fiber bundle of the antagonist muscle (e.g., depressor), but a solitary-to-solitary fiber interdigitation was unlikely with the antagonist muscle. Near the external nasal orifice as well as in the tongue intrinsic muscle layer, at every section, there was a crossing with an endomysium-to-endomysium contact:the nasalis and platysma muscles and; the vertical and transverse (or inferior longitudinal) tongue muscles. Therein, the functional vectors crossed at almost right angle. Also in adult tongue, the vertical and transverse muscle fibers sometimes (0–2 sites per section) crossed with an endomysium-to-endomysium contact. At the muscle crossing with an endomysium contact, the endomysium and basement membrane seemed to receive a friction stress between two muscles. Although some crossings might disappear due to high muscle activity after birth, not a few of them were likely to maintain. To minimize the mechanical stress, a minute nervous control of the timing, duration and strength of muscle contraction seemed to be necessary. 
		                        		
		                        		
		                        		
		                        	
5.Striated muscle fiber crossings of the head and neck: a histological study using near-term human fetuses and elderly cadavers
Ji Hyun KIM ; Kei KITAMURA ; Yohei HONKURA ; Gen MURAKAMI ; Shin-ichi ABE
Anatomy & Cell Biology 2024;57(4):570-578
		                        		
		                        			
		                        			 Striated muscle fiber crossings at almost right angle are known to exist in the face, soft palate, pharyngeal wall and tongue. We aimed to identify a specific interface tissue at the crossing. We observed histological sections from 22 halfheads of 12 near-term fetuses at 26–40 weeks (crown-rump length, 215–334 mm). For comparison, we also observed tongue frontal sections from 5 elderly cadavers (75–85 years old). At the angle of mouth as well as in the soft palate and pharyngeal wall, a solitary striated muscle fiber (e.g., levator) consistently crossed a fiber bundle of the antagonist muscle (e.g., depressor), but a solitary-to-solitary fiber interdigitation was unlikely with the antagonist muscle. Near the external nasal orifice as well as in the tongue intrinsic muscle layer, at every section, there was a crossing with an endomysium-to-endomysium contact:the nasalis and platysma muscles and; the vertical and transverse (or inferior longitudinal) tongue muscles. Therein, the functional vectors crossed at almost right angle. Also in adult tongue, the vertical and transverse muscle fibers sometimes (0–2 sites per section) crossed with an endomysium-to-endomysium contact. At the muscle crossing with an endomysium contact, the endomysium and basement membrane seemed to receive a friction stress between two muscles. Although some crossings might disappear due to high muscle activity after birth, not a few of them were likely to maintain. To minimize the mechanical stress, a minute nervous control of the timing, duration and strength of muscle contraction seemed to be necessary. 
		                        		
		                        		
		                        		
		                        	
6.Development and growth of the temporal fascia: a histological study using human fetuses
Kei KITAMURA ; Satoshi ISHIZUKA ; Ji Hyun KIM ; Hitoshi YAMAMOTO ; Gen MURAKAMI ; Jose Francisco RODRÍGUEZ-VÁZQUEZ ; Shin-ichi ABE
Anatomy & Cell Biology 2024;57(2):288-293
		                        		
		                        			
		                        			 The temporal fascia is a double lamina sandwiching a thick fat layer above the zygomatic bony arch. To characterize each lamina, their developmental processes were examined in fetuses. We observed histological sections from 22 half-heads of 10 mid-term fetuses at 14–18 weeks (crown-rump length, 95–150 mm) and 12 near-term fetuses at 26–40 weeks (crown-rump length, 215–334 mm). The superficial lamina of the temporal fascia was not evident at mid-term. Instead, a loose subcutaneous tissue was attached to the thin, deep lamina of the temporal fascia covering the temporalis muscle. At near-term, the deep lamina became thick, while the superficial lamina appeared and exhibited several variations: i) a monolayered thick membrane (5 specimens); ii) a multi-layered membranous structure (6) and; iii) a cluster of independent thick fasciae each of which were separated by fatty tissues (1). In the second and third patterns, fatty tissue between the two laminae was likely to contain longitudinal fibrous bands in parallel with the deep lamina. Varying proportions of the multi-layered superficial lamina were not attached to the zygomatic arch, but extended below the bony arch. Whether or not lobulation or septation of fatty tissues was evident was not dependent on age. The deep lamina seemed to develop from the temporalis muscle depending on the muscle contraction. In contrast, the superficial lamina developed from subcutaneous collagenous bundles continuous to the cheek. Therein, a difference in development was clearly seen between two categories of the fasciae. 
		                        		
		                        		
		                        		
		                        	
7.Topographical relationships of the yolk sac remnant and vitelline vessels with the midgut loop in the extra-embryonic coelom of human embryos
Zhe-Wu JIN ; Ji Hyun KIM ; Masahito YAMAMOTO ; Gen MURAKAMI ; Shin-ichi ABE ; José Francisco RODRÍGUEZ-VÁZQUEZ
Anatomy & Cell Biology 2022;55(3):356-366
		                        		
		                        			
		                        			 The yolk sac is supplied by the vitelline artery and vein (VA, VV), which run through the yolk stalk in combination with the omphaloenteric duct. Moreover, the VV takes a free posterior course outside the midgut mesentery containing the secondarily-developed superior mesenteric vein (SMV). However, the regression process of these structures has not been demonstrated photographically. The present study evaluated serial histological sections from 20 embryos of stages 15–19 or crown-rump length (CRL) 7.5–20 mm. All specimens carried the SMV as sequential tissue slits. However, an omphaloenteric duct with epithelia continuous with the midgut loop was not observed. In smaller embryos (CRL <13 mm) the VA extended distally or anteriorly from the midgut apex in the extra-embryonic coelom, whereas in larger embryos (CRL 16–20 mm) the artery was absent from the distal side of the apex. The entire course or part of the VV outside the mesentery was always seen, but four larger embryos lacked the venous terminal near the duodenum. A vacuole-like remnant of the yolk sac was present in all smaller embryos (CRL <10 mm), but was absent from 7 of the 11 larger embryos. The size of the remnant was equal to the thickness of the VA or VV, with the remnant being sandwiched between the VA and VV. Moreover, the regressing yolk sac often communicated with or opened to the VV. Consequently, the yolk sac regressed first, followed by the regression of the VA until 6 weeks. The yolk stalk was clearly observed until 5 weeks. 
		                        		
		                        		
		                        		
		                        	
8.Fetal development of the carotid canal with special reference to a contribution of the sphenoid bone and pharyngotympanic tube
Yohei HONKURA ; Masahito YAMAMOTO ; José Francisco RODRÍGUEZ-VÁZQUEZ ; Gen MURAKAM ; Hiroshi ABE ; Shin-ichi ABE ; Yukio KATORI
Anatomy & Cell Biology 2021;54(2):259-269
		                        		
		                        			
		                        			The bony carotid canal is a tube-like bone with a rough surface in contrast to smooth surfaces of the other parts of the temporal bone petrosal portion (petrosa): it takes an impression of the additional, out-sourcing product. No study had been conducted to evaluate a contribution of the adjacent sphenoid and pharyngotympanic tube (PTT) to the carotid canal. We examined sagittal and horizontal histological sections of hemi-heads from 37 human fetuses at 10 to 37 weeks. At 10 to 18 weeks, the future carotid canal was identified as a wide loose space between the cartilaginous cochlea and the ossified or cartilaginous sphenoid elements (ala temporalis and pterygoid). A linear mesenchymal condensation extending between the cochlear wall and ala temporalis suggested the future antero-inferior margin of the carotid canal. This delineation was more clearly identified in later stages. After 25 weeks, 1) the growing pterygoid pushed the PTT upward and, in turn, the PTT pushed the internal carotid artery (ICA) upward toward the petrosa: 2) a membranous ossification occurs in the dense mesenchymal tissue, the latter of which took an appearance of an anterior process of the petrosa; 3) the bony process of the petrosa involved the ICA inside or posteriorly. The bony carotid canal was made with membranous ossification in the dense mesenchymal tissue between the petrosa and sphenoid. The mother tissue was detached from the sphenoid by the PTT. The ossification of the septum between the ICA and tympanic cavity seemed to continue after birth.
		                        		
		                        		
		                        		
		                        	
9.Fetal development of the carotid canal with special reference to a contribution of the sphenoid bone and pharyngotympanic tube
Yohei HONKURA ; Masahito YAMAMOTO ; José Francisco RODRÍGUEZ-VÁZQUEZ ; Gen MURAKAM ; Hiroshi ABE ; Shin-ichi ABE ; Yukio KATORI
Anatomy & Cell Biology 2021;54(2):259-269
		                        		
		                        			
		                        			The bony carotid canal is a tube-like bone with a rough surface in contrast to smooth surfaces of the other parts of the temporal bone petrosal portion (petrosa): it takes an impression of the additional, out-sourcing product. No study had been conducted to evaluate a contribution of the adjacent sphenoid and pharyngotympanic tube (PTT) to the carotid canal. We examined sagittal and horizontal histological sections of hemi-heads from 37 human fetuses at 10 to 37 weeks. At 10 to 18 weeks, the future carotid canal was identified as a wide loose space between the cartilaginous cochlea and the ossified or cartilaginous sphenoid elements (ala temporalis and pterygoid). A linear mesenchymal condensation extending between the cochlear wall and ala temporalis suggested the future antero-inferior margin of the carotid canal. This delineation was more clearly identified in later stages. After 25 weeks, 1) the growing pterygoid pushed the PTT upward and, in turn, the PTT pushed the internal carotid artery (ICA) upward toward the petrosa: 2) a membranous ossification occurs in the dense mesenchymal tissue, the latter of which took an appearance of an anterior process of the petrosa; 3) the bony process of the petrosa involved the ICA inside or posteriorly. The bony carotid canal was made with membranous ossification in the dense mesenchymal tissue between the petrosa and sphenoid. The mother tissue was detached from the sphenoid by the PTT. The ossification of the septum between the ICA and tympanic cavity seemed to continue after birth.
		                        		
		                        		
		                        		
		                        	
10.A temporary disc-like structure at the median atlanto-axial joint in human fetuses
Koichiro SAKANAKA ; Masahito YAMAMOTO ; Hidetomo HIROUCHI ; Ji Hyun KIM ; Gen MURAKAMI ; José Francisco RODRÍGUEZ VÁZQUEZ ; Shin ichi ABE
Anatomy & Cell Biology 2019;52(4):436-442
		                        		
		                        			
		                        			
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aging
		                        			;
		                        		
		                        			Atlanto-Axial Joint
		                        			;
		                        		
		                        			Fetus
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Infant, Newborn
		                        			;
		                        		
		                        			Joints
		                        			;
		                        		
		                        			Zygapophyseal Joint
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail