1.Protective Effect of Xuebijing on Lung Injury in Rats with Severe Acute Pancreatitis by Blocking FPRs/NLRP3 Inflammatory Pathway
Guixian ZHANG ; Dawei LIU ; Xia LI ; Xijing LI ; Pengcheng SHI ; Zhiqiao FENG ; Jun CAI ; Wenhui ZONG ; Xiumei ZHAO ; Hongbin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):113-120
ObjectiveTo explore the therapeutic effect of Xuebijing injection (XBJ) on severe acute pancreatitis induced acute lung injury (SAP-ALI) by regulating formyl peptide receptors (FPRs)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammatory pathway. MethodsSixty rats were randomly divided into a sham group, a SAP-ALI model group, low-, medium-, and high-dose XBJ groups (4, 8, and 12 mL·kg-1), and a positive drug (BOC2, 0.2 mg·kg-1) group. For the sham group, the pancreas of rats was only gently flipped after laparotomy, and then the abdomen was closed, while for the remaining five groups, SAP-ALI rat models were established by retrograde injection of 5% sodium taurocholate (Na-Tc) via the biliopancreatic duct. XBJ and BOC2 were administered via intraperitoneal injection once daily for 3 d prior to modeling and 0.5 h after modeling. Blood was collected from the abdominal aorta 6 h after the completion of modeling, and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The amount of ascites was measured, and the dry-wet weight ratios of pancreatic and lung tissue were determined. Pancreatic and lung tissue was taken for hematoxylin-eosin (HE) staining to observe pathological changes and then scored. The protein expression levels of FPR1, FPR2, and NLRP3 in lung tissue were detected by the immunohistochemical method. Western blot was used to detect the expression of FPR1, FPR2, and NLRP3 in lung tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of FPR1, FPR2, and NLRP3 in lung tissue. ResultsCompared with the sham group, the SAP-ALI model group showed significantly decreased dry-wet weight ratio of lung tissue (P<0.01), serious pathological changes of lung tissue, a significantly increased pathological score (P<0.01), and significantly increased protein and mRNA expression levels of FPR1, FPR2, and NLRP3 in lung tissue (P<0.01). After BOC2 intervention, the above detection indicators were significantly reversed (P<0.01). After treatment with XBJ, the groups of different XBJ doses achieved results consistent with BOC2 intervention. ConclusionXBJ can effectively improve the inflammatory response of the lungs in SAP-ALI rats and reduce damage. The mechanism may be related to inhibiting the expression of FPRs and NLRP3 in lung tissue, which thereby reduces IL-1β and simultaneously antagonize the release of inflammatory factors IL-6 and TNF-α.
2.Rare giant hepatic angiomyolipoma with subcapsular rupture misdiagnosed as hepatocellular carcinoma: A case report
Zhiwei ZHANG ; Feng LIU ; Hezhao ZHANG ; Qinying WANG ; Zhiyong SHI
Journal of Clinical Hepatology 2025;41(3):536-541
Hepatic angiomyolipoma (HAML) is a rare benign mesenchymal tumor frequently observed in middle-aged women. Due to the absence of prominent symptoms in the early stage and the lack of specific imaging findings, the diagnosis of this disease can be challenging, leading to a high rate of misdiagnosis. This article reports a case of giant HAML with subcapsular rupture that was misdiagnosed as hepatocellular carcinoma and introduces the characteristics of the case and its diagnosis and treatment process, in order to provide a reference for the diagnosis and treatment of this type of disease.
3.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.
4.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
5.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
6.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
7.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
8.Study on relationships of MS4A1 gene polymorphism with blood concentration and efficacy of rituximab in patients with non-Hodgkin’s lymphoma
Feng SHI ; Tao LIU ; He HUANG ; Caifu FANG ; Shaoxing GUAN ; Zhang ZHANG ; Zhao WANG ; Xiaojie FANG ; Zhuojia CHEN ; Shu LIU
China Pharmacy 2025;36(13):1641-1647
OBJECTIVE To explore the effects of CD20 coding gene (MS4A1) polymorphism on the blood concentration and efficacy of rituximab in patients with non-Hodgkin’s lymphoma. METHODS A prospective observational study was conducted on 160 newly diagnosed non-Hodgkin’s lymphoma patients who received the R-CHOP regimen at the Sun Yat Sen University Cancer Center from January 2016 to December 2020, with a minimum follow-up period of approximately 5 years. The blood concentration of rituximab was detected by enzyme-linked immunosorbent assay. MS4A1 tagSNPs were selected by Haploview4.2 software, including rs1051461, rs17155034, rs4939364, and rs10501385. The genotype of MS4A1 was detected by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Univariate linear regression analysis was employed to examine the correlation between various factors(demographic, clinical, and genotypic variables) in patients and the steady-state trough concentration of rituximab during the first course of treatment, followed by multivariate linear regression analysis. Kaplan-Meier curves were drawn to evaluate progression-free survival (PFS) and overall survival (OS). Using MS4A1 genotype and tumor stage as independent variables, Cox regression model was employed to evaluate the factors influencing patient prognosis. RESULTS The blood concentration of rituximab in MS4A1 rs10501385 CC carriers was 15.20 μg/mL,which was significantly lower than 21.95 μg/mL in AA+AC carriers (P<0.05). The multivariate linear regression model incorporating tumor stage and MS4A1 rs10501385 polymorphism explained 7.3% of the interindividual variability in rituximab concentrations. Compared with MS4A1 rs1051461 CC carriers, CT+TT carriers had significantly prolonged PFS and OS (P<0.05). The Cox proportional hazards regression model showed that the MS4A1 rs1051461 CC genotype (HR=4.406, 95%CI:1.743-11.137, P<0.05) and tumor Ⅲ&Ⅳ (HR=3.233, 95%CI: 1.413-7.399, P<0.05) were independent risk factors for PFS. CONCLUSIONS The tumor staging and MS4A1 rs10501385 polymorphism are key influencing factors for blood concentration of rituximab, and MS4A1 rs1051461 polymorphism significantly affects PFS in non-Hodgkin’s lymphoma patients.
9.Construction and application of the "Huaxi Hongyi" large medical model
Rui SHI ; Bing ZHENG ; Xun YAO ; Hao YANG ; Xuchen YANG ; Siyuan ZHANG ; Zhenwu WANG ; Dongfeng LIU ; Jing DONG ; Jiaxi XIE ; Hu MA ; Zhiyang HE ; Cheng JIANG ; Feng QIAO ; Fengming LUO ; Jin HUANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):587-593
Objective To construct large medical model named by "Huaxi HongYi"and explore its application effectiveness in assisting medical record generation. Methods By the way of a full-chain medical large model construction paradigm of "data annotation - model training - scenario incubation", through strategies such as multimodal data fusion, domain adaptation training, and localization of hardware adaptation, "Huaxi HongYi" with 72 billion parameters was constructed. Combined with technologies such as speech recognition, knowledge graphs, and reinforcement learning, an application system for assisting in the generation of medical records was developed. Results Taking the assisted generation of discharge records as an example, in the pilot department, after using the application system, the average completion times of writing a medical records shortened (21 min vs. 5 min) with efficiency increased by 3.2 time, the accuracy rate of the model output reached 92.4%. Conclusion It is feasible for medical institutions to build independently controllable medical large models and incubate various applications based on these models, providing a reference pathway for artificial intelligence development in similar institutions.
10.Analysis of chemical constituents and components absorbed into plasma of Ardisia crenata based on UPLC-QE-HF-MS/MS
Hui SHI ; Xiao LI ; Ying ZHOU ; Jingxin DING ; Chang LIU ; Xiongwei LIU ; Xiu DONG ; Yun CHEN ; Tingting FENG
China Pharmacy 2024;35(3):316-321
OBJECTIVE To analyze the chemical constituents and components absorbed into plasma of the extract of Ardisia crenata and to elucidate its possible pharmacodynamic material basis. METHODS Overall, 12 rats were randomly assigned to the blank group (n=6) and A. crenata group (n=6) by the paired comparison method. The drug was administered once daily in the morning and afternoon for three days. Serum samples were prepared from serum after redosing on 4th day. The UPLC-QE-HF-MS/ MS was used to analyze and identify the chemical constituents in A. crenata extract and serum samples. Compound Discoverer 3.0 was employed for retention time correction, peak identification, and peak extraction. According to the secondary mass spectrometry information, the Thermo mzCloud online and Thermo mzVault local databases, referring to the relevant literature and control quality spectrum information were used to preliminarily identify the chemical constituents and components absorbed into plasma of A. crenata. RESULTS A total of 34 compounds were identified from the extract of A. crenata, mainly coumarins, flavonoids, organic acids, amino acids, including bergenin, quercetin, gallic acid, L-pyroglutamic acid, etc. Besides, 5 components absorbed into plasma were identified from serum samples: L-pyroglutamic acid, syringic acid, bergenin, cinnabar root saponin A, and mycophenolic acid. CONCLUSIONS L-pyroglutamic acid, syringic acid, bergenin, cinnabar root saponin A, and mycophenolic acid may act as the pharmacodynamic material basis of A. crenata.

Result Analysis
Print
Save
E-mail