1.Effect of Complanatoside A on the apoptosis of articular chondrocytes
Lu YIN ; Chuanfeng JIANG ; Junjie CHEN ; Ming YI ; Zihe WANG ; Houyin SHI ; Guoyou WANG ; Huarui SHEN
Chinese Journal of Tissue Engineering Research 2025;29(8):1541-1547
BACKGROUND:Chondrocyte apoptosis is an important factor in the development of osteoarthritis,and Complanatoside A has a flavonoid effect,which can inhibit apoptosis of various cells,but its effect on chondrocyte apoptosis and the mechanism of action are not clear. OBJECTIVE:To investigate the intrinsic association and mechanism of Complanatoside A in chondrocyte apoptosis based on the Wnt/β-catenin signaling pathway. METHODS:(1)The cartilage tissues of the femur and tibia transected during knee arthroplasty were collected,and chondrocytes were isolated,cultured in vitro,and identified.(2)Cell counting kit-8 was used to detect the optimal intervention concentration of Complanatoside A in the concentration range of 0-160 μmol/L.(3)Chondrocytes were divided into blank group,sodium nitroprusside(1.5 mmol/L)-induced group,and sodium nitroprusside(1.5 mmol/L)+Complanatoside A(5 μmol/L)group.The viability and apoptosis rate of the cells in each group were detected by cell counting kit-8 and flow cytometry.The expression of type Ⅱ collagen and SOX9 was detected by immunofluorescence staining.The expression of apoptosis-related proteins and Wnt/β-catenin pathway proteins was detected by western blot assay. RESULTS AND CONCLUSION:The cells extracted in vitro were cultured and stained,and were clearly identified as chondrocytes.Complanatoside A had no obvious cytotoxicity to chondrocytes in the concentration range of 0-80 μmol/L,and significantly improved the chondrocyte viability in the concentration range of 2.5-10 μmol/L,especially when the concentration was 5 μmol/L.The apoptotic rate of chondrocytes was higher in the sodium nitroprusside-induced group than the blank control group,while the apoptotic rate was lower in the sodium nitroprusside+Complanatoside A group than the sodium nitroprusside-induced group.The fluorescence intensity of type Ⅱ collagen and SOX9 in chondrocytes was weaker in the sodium nitroprusside-induced group than the blank control group,while the fluorescence intensity of type Ⅱ collagen and SOX9 in the sodium nitroprusside+Complanatoside A group was higher than that of the sodium nitroprusside-induced group.In the sodium nitroprusside-induced group,the protein expression of Bax,Caspase-3,matrix metalloproteinase 13,Wnt3a,Wnt5a and β-catenin was higher than that of the blank control group,while the protein expression of Bcl-2 was lower than that of the blank control group.In the sodium nitroprusside+Complanatoside A group,except for the protein expression of Bcl-2 which was higher than that of the sodium nitroprusside-induced group,the expression of the other aforementioned proteins was lower than that of the sodium nitroprusside-induced group.To conclude,Complanatoside A has a certain inhibitory effect on chondrocyte apoptosis,which could regulate apoptosis-related proteins and promote the expression of chondrocyte regulatory factors,and presumably might play a role through inhibiting the Wnt/β-catenin signaling pathway.
2.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
3.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
4.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
5.Value of serum Aldo-keto reductase family 1 member B10 (AKR1B10) in diagnosis of hepatocellular carcinoma
Yunling DU ; Changjiang SHI ; Fangyuan GAO ; Mengna ZHANG ; Lingling WANG ; Zhuqing ZHANG ; Ying MING ; Shoujun XIE
Journal of Clinical Hepatology 2025;41(4):684-689
ObjectiveTo investigate the expression of serum Aldo-keto reductase family 1 member B10 (AKR1B10) in patients with hepatocellular carcinoma (HCC) in northern China, and to provide a new and valuable biomarker for the clinical diagnosis of HCC. MethodsThis study was conducted among 102 patients with HCC, 119 patients with benign liver disease, and 132 patients with other malignant tumors who attended The Affiliated Hospital of Chengde Medical University and 148 healthy individuals who underwent physical examination from May 2020 to May 2024. ELISA and chemiluminescence were used to measure the serum levels of AKR1B10 and alpha-fetoprotein (AFP). The Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups, and the Kruskal-Wallis H test was used for comparison between three groups and further comparison between two groups; the chi-square test was used for comparison of categorical data between groups. The area under the ROC curve (AUC) was used to assess diagnostic efficiency. ResultsThe expression level of AKR1B10 was 3 053.79 (1 475.67 — 4 605.86) pg/mL in the HCC group, 1 324.42 (659.68 — 2 023.88) pg/mL in the benign liver disease group, 660.68 (377.56 — 2 087.77) pg/mL in the other malignant tumor group, and 318.30 (82.73 — 478.82) pg/mL in the healthy group, with a significant difference between the four groups (H=240.86, P<0.001), and further comparison between two groups showed that the HCC group had a significantly higher level than the other three groups (all P<0.001). The ROC curve analysis of the HCC group and the other three groups showed that serum AKR1B10 had an optimal cut-off value of 1 584.97 pg/mL in the diagnosis of HCC, with an AUC of 0.86 (95% confidence interval [CI]: 0.82 — 0.90), a sensitivity of 74.3%, and a specificity of 85.2%. Compared with each indicator alone, a combination of AKR1B10 and AFP could improve the sensitivity (81.8%) and specificity (91.4%) of HCC diagnosis. AKR1B10 had an AUC of 0.84 (95%CI: 0.78 — 0.90) in the diagnosis of patients with early- or middle-stage HCC, with a sensitivity of 76.2% and a specificity of 81.2%. AKR1B10 had an AUC of 0.85 (95%CI: 0.77 — 0.92) in the diagnosis of patients with AFP-negative HCC, with a sensitivity of 81.6% and a specificity of 79.9%. ConclusionAKR1B10 is a promising serological marker for the diagnosis of HCC, and a combination of AKR1B10 and AFP can improve the detection rate of HCC patients in northern China, especially those with early- or middle-stage HCC and AFP-negative HCC.
6.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
7.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
8.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
9.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
10.Research progress of HGF/c-Met signaling pathway in oral squamous cell carcinoma
SHI Jiafan ; GONG Lingling ; SUN Mingze ; LIU Lulu ; ZHANG Huilin ; LI Ming
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):709-718
Oral squamous cell carcinoma (OSCC) is a malignant tumor that seriously threatens human health. Its typical biological characteristics include strong local invasiveness, high lymph node metastasis rate, and high recurrence rate after treatment. Hepatocyte growth factor (HGF), cellular-mesenchymal to epithelial transition factor (c-Met), and the HGF/c-Met signaling pathway are involved in the regulation of the occurrence and development of OSCC. HGF and c-Met proteins are overexpressed in OSCC, and multiple studies have suggested that they are significantly associated with the malignant characteristics of tumors and poor prognosis. Furthermore, the abnormal activation of the HGF/c-Met signaling pathway (driven by HGF-dependent autocrine/paracrine or non-dependent mechanisms such as MET gene mutations, amplification, fusion, and protein overexpression) can synergistically promote tumor cell invasion, metastasis, and angiogenesis by activating downstream signaling pathways. However, HGF/c-Met can also mediate immune escape by promoting lactate secretion increase, inducing programmed death ligand 1 (PD-L1) expression upregulation, activating and expanding myeloid-derived suppressor cells, and promoting the proliferation of regulatory T cells (Tregs). In addition, the crosstalk between the HGF/c-Met signaling pathway and key pathways such as phosphatidylinositide 3-kinases (PI3K)/protein kinase B (AKT), epidermal growth factor receptor (EGFR), Janus kinase (JAK)/signal transducer and activator of transcription (STAT3), and non-coding RNAs can also promote tumor progression. Currently, three types of targeted drugs have been developed targeting the HGF/c-Met pathway: HGF monoclonal antibody, c-Met monoclonal antibody, and tyrosine kinase inhibitors. Some of these drugs have entered clinical trials. However, the emergence of drug resistance during treatment, especially the bidirectional compensatory activation of alternative signaling pathways such as EGFR, has become a major challenge in clinical practice. This article aims to provide an in-depth analysis of the mechanism of action of the HGF/c-Met pathway in OSCC and its interaction with other pathways, and to review the current research status of existing therapeutic drugs. The aim is to provide an important theoretical basis for developing more effective combined treatment strategies and achieving individualized precise treatment, ultimately improving the clinical prognosis and quality of life of patients.


Result Analysis
Print
Save
E-mail