1.High Expression of INF2 Predicts Poor Prognosis and Promotes Hepatocellular Carcinoma Progression
Hai-Biao WANG ; Man LIN ; Fu-Sang YE ; Jia-Xin SHI ; Hong LI ; Meng YE ; Jie WANG
Progress in Biochemistry and Biophysics 2025;52(1):194-208
ObjectiveINF2 is a member of the formins family. Abnormal expression and regulation of INF2 have been associated with the progression of various tumors, but the expression and role of INF2 in hepatocellular carcinoma (HCC) remain unclear. HCC is a highly lethal malignant tumor. Given the limitations of traditional treatments, this study explored the expression level, clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets. MethodsIn this study, we used public databases to analyze the expression of INF2 in pan-cancer and HCC, as well as the impact of INF2 expression levels on HCC prognosis. Quantitative real time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues. The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples. Subsequently, the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments. Finally, the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments. ResultsINF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival, liver cirrhosis and pathological differentiation of HCC patients. The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC. In vivo and in vitro HCC models, upregulated expression of INF2 triggers the proliferation and migration of the HCC cell, while knockdown of INF2 could counteract this effect. INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression, thus promoting tumor progression. ConclusionINF2 is highly expressed in HCC and is associated with poor prognosis. High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression, and targeting INF2 may be beneficial for HCC patients with high expression of INF2.
2.Ethical reflections on the clinical application of medical artificial intelligence
Fangfang CUI ; Zhonglin LI ; Xianying HE ; Wenchao WANG ; Yuntian CHU ; Xiaobing SHI ; Jie ZHAO
Chinese Medical Ethics 2025;38(2):159-165
Medical artificial intelligence (AI) is a new type of application formed by the combination of machine learning, computer vision, natural language processing, and other technologies with clinical medical treatment. With the continuous iteration and development of relevant technologies, medical AI has shown great potential in improving the efficiency of diagnosis and treatment, and service quality, but it also increases the possibility of triggering ethical issues. Ethical issues resulting from the clinical application of medical AI were analyzed, including the lack of algorithmic interpretability and transparency of medical AI, leading to information asymmetry and cognitive discrepancies; the concerning status of security and privacy protection of medical data; and the complex and unclear division of responsibilities due to the collaborative participation of multiple subjects in the clinical application of medical AI, resulting in increased difficulty in the identification of medical accidents and clarification of responsibilities. The paper proposed the principles of not harming patients’ interests, physician’s subjectivity, fairness and inclusiveness, and rapid response. It also explored the strategies and implementation paths for responding to the ethical issues of medical AI from multiple perspectives, including standardizing the environment and processes, clarifying responsibility attribution, continuously assessing the impact of data protection, guaranteeing data security, ensuring model transparency and interpretability, carrying out multi-subject collaboration, as well as the principles of being driven by ethical values and adhering to the “human health-centeredness.” It aimed to provide guidance for the healthy development of medical AI, ensuring technological progress while effectively managing and mitigating accompanying ethical risks, thereby promoting the benign development of medical AI technology and better serving the healthcare industry and patients.
3.Interpretation of metabolic dysfunction and alcohol-related liver disease: Position statement by an expert panel on alcohol-related liver disease (2024 edition)
Zhenyao JIANG ; Binbin ZHANG ; Jie LI ; Junping SHI
Journal of Clinical Hepatology 2025;41(3):442-445
In November 2024, the Expert Group on Alcohol-related Liver Disease released a position statement on metabolic dysfunction and alcohol-related liver disease (MetALD). MetALD is a new subtype of steatotic liver disease and refers to MASLD patients with a relatively large amount of alcohol consumption. The position statement points out the importance of accurate evaluation of alcohol consumption and recommends to quantify alcohol consumption using standard methods and alcohol biomarkers, and a comprehensive diagnosis should be made based on metabolic risk factors. In addition, the position statement analyzes the influence of drinking pattern on the diagnosis of MetALD and recommends to consider long-term drinking history during typing. The position statement also discusses the complex association between drinking and the diseases including metabolic syndrome, hepatic steatosis, fibrosis, and type 2 diabetes mellitus, and it is pointed out that the hierarchical management of patients should be optimized based on liver histological models and noninvasive models. The position statement elaborates on the definition of MetALD, drinking assessment, the interaction between alcohol use and metabolic dysfunction, and the methods for comprehensive management of MetALD, in order to facilitate learning and provide guidance for clinicians and researchers in clinical practice.
4.Changes in the body shape and ergonomic compatibility for functional dimensions of desks and chairs for students in Harbin during 2010-2024
Chinese Journal of School Health 2025;46(3):315-320
Objective:
To analyze the change trends in the body shape indicators and proportions of students in Harbin from 2010 to 2024, and to investigate ergonomic compatibility of functional dimensions of school desks and chairs with current student shape indicators, so as to provide a reference for revising furniture standards of desks and chairs.
Methods:
Between September and November of both 2010 and 2024, a combination of convenience sampling and stratified cluster random sampling was conducted across three districts in Harbin, yielding samples of 6 590 and 6 252 students, respectively. Anthropometric shape indicators cluding height, sitting height, crus length, and thigh length-and their proportional changes were compared over the 15-year period. The 2024 data were compared with current standard functional dimensions of school furniture. The statistical analysis incorporated t-test and Mann-Whitney U- test.
Results:
From 2010 to 2024, average height increased by 1.8 cm for boys and 1.5 cm for girls; sitting height increased by 1.5 cm for both genders; crus length increased by 0.3 cm for boys and 0.4 cm for girls; and thigh length increased by 0.5 cm for both genders. The ratios of sitting height to height, and sitting height to leg length increased by less than 0.1 . The difference between desk chair height and 1/3 sitting height ranged from 0.4-0.8 cm. Among students matched with size 0 desks and chairs, 22.0% had a desk to chair height difference less than 0, indicating that the desk to chair height difference might be insufficient for taller students. The differences between seat height and fibular height ranged from -1.4 to 1.1 cm; and the differences between seat depth and buttock popliteal length ranged from -9.8 to 3.4 cm. Among obese students, the differences between seat width and 1/2 hip circumference ranged from -20.5 to -8.7 cm, while it ranged from -12.2 to -3.8 cm among non obese students.
Conclusion
Current furniture standards basically satisfy hygienic requirements; however, in the case of exceptionally tall and obese students, ergonomic accommodations such as adaptive seating allocation or personalized adjustments are recommended to meet hygienic requirements.
5.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
6.Combination Therapy of Pyrotinib and Metronomic Vinorelbine in HER2+ Advanced Breast Cancer after Trastuzumab Failure (PROVE): A Prospective Phase 2 Study
Chunfang HAO ; Xu WANG ; Yehui SHI ; Zhongsheng TONG ; Shufen LI ; Xiaodong LIU ; Lan ZHANG ; Jie ZHANG ; Wenjing MENG ; Li ZHANG
Cancer Research and Treatment 2025;57(2):434-442
Purpose:
Approximately 50%-74% of patients with metastatic human epidermal growth factor receptor 2 (HER2)–positive breast cancer do not respond to trastuzumab, with 75% of treated patients experiencing disease progression within a year. The combination of pyrotinib and capecitabine has showed efficacy in these patients. This study evaluates the efficacy and safety of pyrotinib combined with metronomic vinorelbine for trastuzumab-pretreated HER2-positive advanced breast cancer patients.
Materials and Methods:
In this phase 2 trial, patients aged 18-75 years with HER2-positive advanced breast cancer who had previously failed trastuzumab treatment were enrolled to receive pyrotinib 400 mg daily in combination with vinorelbine 40mg thrice weekly. The primary endpoint was progression-free survival (PFS), while secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety.
Results:
From October 21, 2019, to January 21, 2022, 36 patients were enrolled and received at least one dose of study treatment. At the cutoff date, 20 experienced disease progression or death. With a median follow-up duration of 35 months, the median PFS was 13.5 months (95% confidence interval [CI], 8.3 to 18.5). With all patients evaluated, an ORR of 38.9% (95% CI, 23.1 to 56.5) and a DCR of 83.3% (95% CI, 67.2 to 93.6) were achieved. The median OS was not reached. Grade 3 adverse events (AEs) were observed in 17 patients, with diarrhea being the most common (27.8%), followed by vomiting (8.3%) and stomachache (5.6%). There were no grade 4/5 AEs.
Conclusion
Pyrotinib combined with metronomic vinorelbine showed promising efficacy and an acceptable safety profile in HER2-positive advanced breast cancer patients after trastuzumab failure.
7.Combination Therapy of Pyrotinib and Metronomic Vinorelbine in HER2+ Advanced Breast Cancer after Trastuzumab Failure (PROVE): A Prospective Phase 2 Study
Chunfang HAO ; Xu WANG ; Yehui SHI ; Zhongsheng TONG ; Shufen LI ; Xiaodong LIU ; Lan ZHANG ; Jie ZHANG ; Wenjing MENG ; Li ZHANG
Cancer Research and Treatment 2025;57(2):434-442
Purpose:
Approximately 50%-74% of patients with metastatic human epidermal growth factor receptor 2 (HER2)–positive breast cancer do not respond to trastuzumab, with 75% of treated patients experiencing disease progression within a year. The combination of pyrotinib and capecitabine has showed efficacy in these patients. This study evaluates the efficacy and safety of pyrotinib combined with metronomic vinorelbine for trastuzumab-pretreated HER2-positive advanced breast cancer patients.
Materials and Methods:
In this phase 2 trial, patients aged 18-75 years with HER2-positive advanced breast cancer who had previously failed trastuzumab treatment were enrolled to receive pyrotinib 400 mg daily in combination with vinorelbine 40mg thrice weekly. The primary endpoint was progression-free survival (PFS), while secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety.
Results:
From October 21, 2019, to January 21, 2022, 36 patients were enrolled and received at least one dose of study treatment. At the cutoff date, 20 experienced disease progression or death. With a median follow-up duration of 35 months, the median PFS was 13.5 months (95% confidence interval [CI], 8.3 to 18.5). With all patients evaluated, an ORR of 38.9% (95% CI, 23.1 to 56.5) and a DCR of 83.3% (95% CI, 67.2 to 93.6) were achieved. The median OS was not reached. Grade 3 adverse events (AEs) were observed in 17 patients, with diarrhea being the most common (27.8%), followed by vomiting (8.3%) and stomachache (5.6%). There were no grade 4/5 AEs.
Conclusion
Pyrotinib combined with metronomic vinorelbine showed promising efficacy and an acceptable safety profile in HER2-positive advanced breast cancer patients after trastuzumab failure.
8.Combination Therapy of Pyrotinib and Metronomic Vinorelbine in HER2+ Advanced Breast Cancer after Trastuzumab Failure (PROVE): A Prospective Phase 2 Study
Chunfang HAO ; Xu WANG ; Yehui SHI ; Zhongsheng TONG ; Shufen LI ; Xiaodong LIU ; Lan ZHANG ; Jie ZHANG ; Wenjing MENG ; Li ZHANG
Cancer Research and Treatment 2025;57(2):434-442
Purpose:
Approximately 50%-74% of patients with metastatic human epidermal growth factor receptor 2 (HER2)–positive breast cancer do not respond to trastuzumab, with 75% of treated patients experiencing disease progression within a year. The combination of pyrotinib and capecitabine has showed efficacy in these patients. This study evaluates the efficacy and safety of pyrotinib combined with metronomic vinorelbine for trastuzumab-pretreated HER2-positive advanced breast cancer patients.
Materials and Methods:
In this phase 2 trial, patients aged 18-75 years with HER2-positive advanced breast cancer who had previously failed trastuzumab treatment were enrolled to receive pyrotinib 400 mg daily in combination with vinorelbine 40mg thrice weekly. The primary endpoint was progression-free survival (PFS), while secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety.
Results:
From October 21, 2019, to January 21, 2022, 36 patients were enrolled and received at least one dose of study treatment. At the cutoff date, 20 experienced disease progression or death. With a median follow-up duration of 35 months, the median PFS was 13.5 months (95% confidence interval [CI], 8.3 to 18.5). With all patients evaluated, an ORR of 38.9% (95% CI, 23.1 to 56.5) and a DCR of 83.3% (95% CI, 67.2 to 93.6) were achieved. The median OS was not reached. Grade 3 adverse events (AEs) were observed in 17 patients, with diarrhea being the most common (27.8%), followed by vomiting (8.3%) and stomachache (5.6%). There were no grade 4/5 AEs.
Conclusion
Pyrotinib combined with metronomic vinorelbine showed promising efficacy and an acceptable safety profile in HER2-positive advanced breast cancer patients after trastuzumab failure.
9.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes.
10.Intergenerational Effects on Metabolic Health: Perspectives on Maternal Nutrition and Exercise During Pregnancy
Jie LI ; Hai-Wang SHI ; Rui DUAN
Progress in Biochemistry and Biophysics 2025;52(6):1605-1616
With the increasing prevalence of overweight and obesity among children and adolescents in China, pediatric metabolic syndrome has emerged as a significant public health challenge. The Developmental Origins of Health and Disease (DOHaD) theory underscores the critical influence of early environmental factors on lifelong metabolic health. Consequently, maternal nutritional status and physical activity during pregnancy have become key modifiable factors that have attracted considerable attention in recent years. Research indicates exposure to a maternal high-fat diet (HFD) during pregnancy has long-term effects on offspring health, which may be transmitted through placental transit disorder, inflammation, and oxidative stress. Similarly, a high-protein diet (HPD) during pregnancy exhibits a dose- and time-dependent biphasic effect: excessive intake may lead to fetal growth restriction and an increased risk of preterm birth, whereas moderate supplementation may instead reduce the susceptibility of offspring to obesity. Interestingly, caloric restriction (CR) during pregnancy presents a double-edged sword: while it may impair the development of metabolic organs in offspring, moderate CR in metabolically compromised mothers can ameliorate maternal metabolic dysfunction and reprogram oocyte DNA methylation, significantly lowering the risk of metabolic disorders in offspring. Notably, metabolic abnormalities induced by a low-protein diet (LPD) during pregnancy demonstrate lifecycle-accumulative effects and transgenerational inheritance, with offspring exhibiting obesity phenotypes during weaning, insulin resistance in adulthood, and hepatic decompensation in old age, mediated through oocyte epigenetic reprogramming. Additionally, maintaining an optimal micronutrient balance is crucial for the metabolic homeostasis of offspring, as both deficiency and excess can lead to detrimental outcomes. Maternal exercise has been established as a safe and effective non-pharmacological intervention that confers multigenerational metabolic benefits through diverse biological pathways. Maternal metabolic dysregulation represents a critical determinant of offspring metabolic disorders. Regular exercise during gestation exerts protective effects by attenuating maternal systemic inflammation and reducing the incidence of pregnancy-related complications, thereby effectively mitigating fetal overgrowth and metabolic dysfunction. This dual benefit for both mother and offspring underscores the pivotal role of gestational physical activity in promoting long-term metabolic health. The placenta, serving as the exclusive interface for maternal-fetal communication, mediates exercise-induced metabolic programming through enhanced secretion of key regulatory factors (including SOD3, Apelin, ADPN, and Irisin) and promotes the development of vascular networks, collectively optimizing nutrient transport efficiency. The intrauterine period represents a crucial window for epigenetic reprogramming, during which maternal exercise modulates DNA methylation patterns of critical metabolic genes (e.g., Ppargc-1α, Prdm16, Klf4, and Slc23a2) in offspring, thereby enhancing their capacity to resist metabolic disorders. Notably, the regulatory effects of maternal exercise extend beyond the gestational period. Postnatally, exercise-induced modifications in the bioactive components of breast milk and gut microbiota composition contribute to the sustained maintenance of metabolic homeostasis in offspring, establishing a continuum of metabolic protection from prenatal to postnatal stages. This review explores the potential of maternal combined nutrition-exercise interventions, suggesting that such strategies may synergistically enhance transgenerational health benefits through interactions within the metabolic-epigenetic network, thereby outperforming single interventions. Additionally, it examines current research limitations, including controversies surrounding transgenerational mechanisms, sex-specific responses, and undefined dynamic thresholds, while providing directions for future investigations. These findings pave the way for a theoretical foundation for early-life health interventions, potentially offering a more effective strategy for combatting intergenerational metabolic disorders.


Result Analysis
Print
Save
E-mail