1.Development and validation of a prediction model for acute renal failure after lung transplantation
Sheng CHEN ; Chen PAN ; Shaoxiang LI ; Bingzheng ZHANG ; Wenjie JIAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):473-481
Objective To identify and analyze risk factors for acute renal failure (ARF) following lung transplantation and to develop a predictive model. Methods Data for this study were obtained from the United Network for Organ Sharing (UNOS) database, encompassing patients who underwent unilateral or bilateral lung transplantation between 2015 and 2022. We analyzed both preoperative and postoperative clinical characteristics of the patients. A combined approach utilizing random forest and least absolute shrinkage and selection operator (LASSO) regression was employed to identify key factors associated with the incidence of ARF post-transplantation, based on which a nomogram model was developed. The predictive performance of the constructed model was evaluated in both training and validation sets, using receiver operating characteristic (ROC) curves and area under the curve (AUC) metrics to verify and compare model effectiveness. Results A total of 15 110 lung transplantation patients were included in the study, consisting of6 041 males and 9 069 females, with a median age of 62.00 years (interquartile range: 54.00 to 67.00). The analysis revealed statistically significant differences between postoperative renal dialysis and non-dialysis patients regarding preoperative lung diagnosis, estimated glomerular filtration rate (eGFR), mechanical ventilation, preoperative ICU treatment, extracorporeal membrane oxygenation (ECMO) support, infections occurring within two weeks prior to transplantation, Karnofsky Performance Status (KPS) score, waitlist duration, double-lung transplantation, and ischemia time (P<0.05). Five key variables associated with ARF after lung transplantation were identified through random forest and LASSO regression: recipients’ eGFR, preoperative ICU treatment, ECMO support, bilateral lung transplantation, and ischemia time. A nomogram model was subsequently established. Model evaluation demonstrated that the constructed predictive model achieved high accuracy in both training and validation sets, with favorable AUC values, confirming its validity and reliability. Conclusion This study identifies common risk factors for ARF following lung transplantation and introduces an effective predictive model with potential clinical applications.
2.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
3.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
4.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
5.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
6.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
7.Screening and identification of human monoclonal antibodies against low-calcium response V antigen of Yersinia pestis
Li ZHANG ; Bin-Yang ZHENG ; Qi ZHANG ; Hai-Lian WU ; Hong-Xin PAN ; Feng-Cai ZHU ; Hai-Sheng WU ; Jian-Fang ZHOU
Chinese Journal of Zoonoses 2024;40(1):15-20
To characterize human antibodies against low-calcium response V(LcrV)antigen of Yersinia pestis,the mono-clonal antibodies were screened and assayed.Antibody gene was derived from peripheral blood mononuclear cells of the vaccin-ees immunized by plague subunit vaccine in phase Ⅱb clinical trial.Human ScFv antibody library was constructed by phage dis-play.After panning library by using recombinant LcrV antigen,antibody variable genes were sequenced and converted into IgG1 format to evaluate its binding specificity and relevant parameters.An anti-plague human ScFv antibody library was estab-lished contained 7.54× 108 independent clones.After panning by LcrV antigen,3 human antibodies named as RV-B4,RV-D1 and RV-E8,respectively,were identified.Using indirect enzyme-linked immunosorbent assay(ELISA)and Western blot(WB),the specific bindings of the mAbs to LcrV antigen were confirmed.The dissociation constant(KD)of them to LcrV is 2.1 nmol/L,1.24 nmol/L and 42 nmol/L,respectively.Minor protective efficacy was found among 3 human antibodies in Y.pestis 141-infected mice.Three anti-LcrV monoclonal antibodies generated from immunized vaccinees were binding specific antibod-ies and could not block plague infection in mice.These antibodies are the potential candidate reagents for basic research of plague immunity and the application of plague diagnosis.
8.The causal relationship between blood lipids and muscle atrophy based on Mendelian randomization analysis of two samples
Zhihua PENG ; Junxi PAN ; Qinghui FENG ; Tianzhao TIAN ; Sheng ZHANG ; An LI ; Yingfeng CAI
Chinese Journal of Tissue Engineering Research 2024;28(23):3699-3703
BACKGROUND:Osteoporosis is often accompanied by sarcopenia and an increased risk of fractures from falls.Recent studies have indicated a close relationship between lipid metabolism and sarcopenia.Abnormal lipid metabolism may directly impact muscle physiological function and metabolism. OBJECTIVE:To investigate the relationship between lipid metabolism and sarcopenia and evaluate their causal relationship using Mendelian randomization. METHODS:Mendelian randomization was used to explore the causal relationship between low-density lipoprotein cholesterol,high-density lipoprotein cholesterol,triglycerides,and muscle mass.Research data from genome-wide association studies were used and a sensitivity analysis was conducted to verify the reliability of the results.Approximate indicators of muscle mass,including trunk lean mass and appendicular lean mass,were used as outcome measures. RESULTS AND CONCLUSION:The study found a negative correlation of low-density lipoprotein cholesterol and triglycerides with muscle mass,while no correlation was observed between high-density lipoprotein cholesterol and muscle mass.The results of the sensitivity analysis indicated a robust causal relationship.Using Mendelian randomization,this study provides evidence of a causal relationship between low-density lipoprotein cholesterol and triglycerides and muscle mass.This finding deepens our understanding of the effects of lipids on sarcopenia and has important clinical implications for the prevention and treatment of sarcopenia and osteoporosis.
9.A novel method for integrating chromatographic fingerprint analytical units of Chinese materia medica: the matching frequency statistical moment method
LI Haiying ; PAN Xue ; WANG Mincun ; LI Wenjiao ; HE Peng ; HUANG Sheng ; HE Fuyuan
Digital Chinese Medicine 2024;7(3):294-308
Methods:
This study established the MFSM method. To demonstrate its effectiveness, we applied this novel approach to analyze Danxi Granules (丹膝颗粒, DXG) and its constituent herbal materials. To begin with, the ultra-performance liquid chromatography (UPLC) was applied to obtain the chromatographic fingerprints of DXG and its constituent herbal materials. Next, the MFSM was leveraged to compress and integrate them into a new fingerprint with fewer analytical units. Then, we characterized the properties and variability of both the original and integrated fingerprints by calculating total quantum statistical moment (TQSM) parameters, information entropy and information amount, along with their relative standard deviation (RSD). Finally, we compared the TQSM parameters, information entropy and information amount, and their RSD between the traditional and novel fingerprints to validate the new analytical method.
Results:
The chromatographic peaks of DXG and its 12 raw herbal materials were divided and integrated into peak families by the MFSM method. Before integration, the ranges of the peak number, three TQSM parameters, information entropy and information amount for each peak or peak family of UPLC fingerprints of DXG and its 12 raw herbal materials were 95.07 − 209.73,
10.Transient Peripheral Carotid Inflammation Syndrome Diagnosed by Contrast-enhanced Ultrasound: A Case Report
Chunlei PAN ; Ying WANG ; Yahong WANG ; Li ZHANG ; Zhitong GE ; Yu CHEN ; Sheng CAI ; Hongyan WANG ; Xiao YANG ; Jianchu LI
Medical Journal of Peking Union Medical College Hospital 2024;16(3):785-789
Transient perivascular inflammation of the carotid artery (TIPIC) syndrome is a relatively rare disease, and ultrasound is the first screening method for initial diagnosis of the disease. Contrast-enhanced ultrasound (CEUS) has unique advantages in the follow-up of patients with TIPIC syndrome. This paper reports a patient with TIPIC syndrome who was treated with acute left neck pain. The inflammation was significantly relieved and subsided after treatment with non-steroidal anti-inflammatory drugs. The ultrasound changes of carotid artery lesions in this patient during follow-up were analyzed, and the application value of CEUS in the follow-up diagnosis of this disease was summarized, in the hope of providing clinical reference.

Result Analysis
Print
Save
E-mail