1.The Application of Quantum Dots in Disease Diagnosis and Treatment
Ji-Sheng SHEN ; Li-Li QI ; Jin-Bo WANG ; Zhi-Jian KE ; Qi-Chao WANG
Progress in Biochemistry and Biophysics 2025;52(8):1917-1931
		                        		
		                        			
		                        			Quantum dots (QDs), nanoscale semiconductor crystals, have emerged as a revolutionary class of nanomaterials with unique optical and electrochemical properties, making them highly promising for applications in disease diagnosis and treatment. Their tunable emission spectra, long-term photostability, high quantum yield, and excellent charge carrier mobility enable precise control over light emission and efficient charge utilization, which are critical for biomedical applications. This article provides a comprehensive review of recent advancements in the use of quantum dots for disease diagnosis and therapy, highlighting their potential and the challenges involved in clinical translation. Quantum dots can be classified based on their elemental composition and structural configuration. For instance, IB-IIIA-VIA group quantum dots and core-shell structured quantum dots are among the most widely studied types. These classifications are essential for understanding their diverse functionalities and applications. In disease diagnosis, quantum dots have demonstrated remarkable potential due to their high brightness, photostability, and ability to provide precise biomarker detection. They are extensively used in bioimaging technologies, enabling high-resolution imaging of cells, tissues, and even individual biomolecules. As fluorescent markers, quantum dots facilitate cell tracking, biosensing, and the detection of diseases such as cancer, bacterial and viral infections, and immune-related disorders. Their ability to provide real-time, in vivo tracking of cellular processes has opened new avenues for early and accurate disease detection. In the realm of disease treatment, quantum dots serve as versatile nanocarriers for targeted drug delivery. Their nanoscale size and surface modifiability allow them to transport therapeutic agents to specific sites, improving drug bioavailability and reducing off-target effects. Additionally, quantum dots have shown promise as photosensitizers in photodynamic therapy (PDT). When exposed to specific wavelengths of light, quantum dots interact with oxygen molecules to generate reactive oxygen species (ROS), which can selectively destroy malignant cells, vascular lesions, and microbial infections. This targeted approach minimizes damage to healthy tissues, making PDT a promising strategy for treating complex diseases. Despite these advancements, the translation of quantum dots from research to clinical application faces significant challenges. Issues such as toxicity, stability, and scalability in industrial production remain major obstacles. The potential toxicity of quantum dots, particularly to vital organs, has raised concerns about their long-term safety. Researchers are actively exploring strategies to mitigate these risks, including surface modification, coating, and encapsulation techniques, which can enhance biocompatibility and reduce toxicity. Furthermore, improving the stability of quantum dots under physiological conditions is crucial for their effective use in biomedical applications. Advances in surface engineering and the development of novel encapsulation methods have shown promise in addressing these stability concerns. Industrial production of quantum dots also presents challenges, particularly in achieving consistent quality and scalability. Recent innovations in synthesis techniques and manufacturing processes are paving the way for large-scale production, which is essential for their widespread adoption in clinical settings. This article provides an in-depth analysis of the latest research progress in quantum dot applications, including drug delivery, bioimaging, biosensing, photodynamic therapy, and pathogen detection. It also discusses the multiple barriers hindering their clinical use and explores potential solutions to overcome these challenges. The review concludes with a forward-looking perspective on the future directions of quantum dot research, emphasizing the need for further studies on toxicity mitigation, stability enhancement, and scalable production. By addressing these critical issues, quantum dots can realize their full potential as transformative tools in disease diagnosis and treatment, ultimately improving patient outcomes and advancing biomedical science. 
		                        		
		                        		
		                        		
		                        	
		                				2.A new glycoside from Alstonia mairei  Lévl.
		                			
		                			Li-ke WANG ; Bing-yan LI ; Zhen-zhu ZHAO ; Yan-zhi WANG ; Xiao-kun LI ; Wei-sheng FENG ; Ying-ying SI
Acta Pharmaceutica Sinica 2025;60(1):191-195
		                        		
		                        			
		                        			 Nine compounds were isolated and purified from 90% ethanol extract of 
		                        		
		                        	
3.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
		                        		
		                        			
		                        			 Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice. 
		                        		
		                        		
		                        		
		                        	
4.Relationship between serum miR-410-3p expression and knee soft tissue lesions in patients with rheumatoid arthritis
Hui RAO ; Sheng-Zhi JIANG ; Yu-Bei FAN ; Yu-Qing ZHOU ; Li-Hua ZHANG
Journal of Regional Anatomy and Operative Surgery 2024;33(2):137-140
		                        		
		                        			
		                        			Objective To explore the expression of serum miR-410-3p in patients with rheumatoid arthritis(RA)and its relationship with knee soft tissue lesions.Methods A total of 89 RA patients admitted to our hospital were selected and divided into the active group(42 cases)and the remission group(47 cases)according to disease activity score in 28 joints(DAS28).In addition,52 healthy volunteers underwent physical examination during the same period in our hospital were selected as the healthy group.The expression level of serum miR-410-3p was detected by RT-PCR,the lesions of knee soft tissue was examined by ultrasound,and the relationship between the expression of serum miR-410-3p and knee soft tissue lesions was analyzed by Pearson.Results The expression levels of serum miR-410-3p of patients in the active group and the remission group were lower than that in the healthy group(P<0.05),and the expression level of serum miR-410-3p of patients in the active group was lower than that in the remission group(P<0.05).The cartilage thicknesses of medial and lateral ankle of patients in the active group and the remission group were smaller than those in the healthy group(P<0.05),and the above indexes in the active group were smaller than those in the remission group(P<0.05).The depths of suprapatellar bursa fluid and synovial thicknesses of patients in the active group and the remission group were greater than those in the healthy group(P<0.05),and the depth of suprapatellar bursa fluid and synovial thickness of patients in the active group were greater than those in the remission group(P<0.05).The level of serum miR-410-3p in RA patients was positively correlated with the depth of suprapatellar bursa fluid and synovial thickness(P<0.05),and negatively correlated with the cartilage thicknesses of medial and lateral ankle(P<0.05).Conclusion Serum miR-410-3p expression level in RA patients is decreased,which was closely related to knee soft tissue lesions,detecting the changes of serum miR-410-3p level may provide a reference for the evaluation of knee soft tissue lesions.
		                        		
		                        		
		                        		
		                        	
5.Application of the OmniLogTM microbial identification system in the detection of the host spectrum for wild-type plague phage in Qinghai Plateau
Cun-Xiang LI ; Zhi-Zhen QI ; Qing-Wen ZHANG ; Hai-Hong ZHAO ; Long MA ; Pei-Song YOU ; Jian-Guo YANG ; Hai-Sheng WU ; Jian-Ping FENG
Chinese Journal of Zoonoses 2024;40(1):21-25
		                        		
		                        			
		                        			The growth of three plague phages from Qinghai Plateau in two Yersinia pestis strains(plague vaccine strains EV76 and 614F)and four non-Yersinia pestis strains(Yersinia pseudotuberculosis PTB3,PTB5,Escherichia coli V517,and Yersinia enterocolitica 52302-2)were detected through a micromethod based on the OmniLogTM microbial identification system and by the drop method,to provide a scientific basis for future ecological studies and classification based on the host range.For plague vaccine strains EV76 and 614F,successful phage infection and subsequent phage growth were observed in the host bacte-rium.Diminished bacterial growth and respiration and a concomitant decrease in color were observed with the OmniLogTM mi-crobial identification system at 33 ℃ for 48 h.Yersinia pseudotuberculosis PTB5 was sensitive to Yersinia pestis phage 476,but Yersinia pseudotuberculosis PST5 was insensitive to phage 087 and 072204.Three strains of non-Yersinia pestis(Yersinia pseudotuberculosis PTB3,Escherichia coli V517,and Yersinia enterocolitica 52302-2)were insensitive to Yersinia pestis pha-ges 087,072204,and 476 showed similar growth curves.The growth of phages 476 and 087,as determined with the drop method,in two Yersinia pestis strains(plague vaccine strains EV76 and 614F)and four non-Yersinia pestis strains(Yersinia pseudotuberculosis PTB3,Escherichia coli V517,and Yersin-ia enterocolitica 52302-2)showed the same results at 37 ℃,on the basis of comparisons with the OmniLogTM microbial i-dentification system;in contrast,phages 072204 did not show plaques on solid medium at 37 ℃ with plague vaccine strains EV76 and 614F.Determination based on the OmniLogTM detection system can be used as an alternative to the traditional determination of the host range,thus providing favorable application val-ue for determining the interaction between the phage and host bacteria.
		                        		
		                        		
		                        		
		                        	
6.mRNA Vaccines and Drugs: a New Favorite for Cancer Immunotherapy
Zhi-Meng WEI ; Sheng DANG ; Guang-Chen LI ; Lan-Zhu GAO ; Jing-Bo ZHAI
Progress in Biochemistry and Biophysics 2024;51(9):2115-2132
		                        		
		                        			
		                        			mRNA vaccines and drugs enter host cells through delivery vectors and produce target proteins using the protein synthesis mechanism of cells. mRNA and target proteins can induce the body to produce innate immunity and adaptive immunity, and the target protein itself can also play a corresponding role. Tumor cells are inhibited and cleared under the above immune effects and target proteins. This article reviews the immunogenicity of mRNA, that is, the specific mechanism of stimulating the body to produce an immune response.At the same time, the main types of cells transfected by mRNA vaccine were briefly introduced. (1) Muscle cells, epidermal cells, dendritic cells and macrophages at the injection site; (2) immune cells in peripheral lymphoid organs;(3) liver cells and spleen cells, etc. Although transfected with a variety of cells, it is mainly enriched in immune cells and liver cells because immune cells express toll-like receptors and liver cells express low-density lipoprotein receptors. mRNA vaccines and drugs are mainly divided into non-replicating mRNA (nrmRNA),self-amplifying RNA (saRNA), trans-amplifying RNA (taRNA) and circular RNA (circRNA).This article reviews how these 4 types of vaccines and drugs work, and compares their advantages and disadvantages. Due to its inherent immunogenicity, instability, and low delivery efficiency in vivo, mRNA vaccines and drugs have been unable to enter the clinic. This article describes in detail how to reformation and modify the 5'cap, 5'UTR, 3'UTR, ORF, 3'Poly(A) and some nucleotides of mRNA to eliminate its immunogenicity and instability. Due to the low efficiency of the delivery carrier, the researchers optimized it. This article briefly introduces the application of non-viral vectors and their targeting, specifically involving the mechanism of action of various types of delivery vectors and their advantages and disadvantages, and summarizes some of the current targeting vectors. Targeted carriers can improve the delivery efficiency of mRNA to specific tissues and prevent side effects of systemic exposure, such as liver injury. The specific methods of using mRNA vaccines and drugs to treat cancer are as follows: mRNA can be used to encode and transcribe tumor-associated antigens, tumor-specific antigens (TSAs), therapeutic antibodies, cytokines, tumor suppressors, oncolytic viruses, CRISPR-Cas9, CARs and TCRs, so as to play an anti-tumor role. In this paper, the specific mechanism of the above methods and the current research and development of corresponding mRNA vaccines and drugs are briefly reviewed. The successful development of the COVID-19 mRNA vaccine has brought mRNA technology to the attention of the world and brought new and effective means for the prevention and treatment of cancer. mRNA vaccines and drugs have the advantages of short development cycle, dual immune mechanism, safety, high efficiency and large-scale production. At the same time, there are also many areas that need further improvement, such as the development of ideal target TSAs, the in-depth development of saRNA, taRNA and circRNA, the development of targeted nano-delivery for different tissues and organs, the expansion of mRNA administration routes, and the development of mRNA that can be stably stored at room temperature or even high temperature. These problems need to be further studied and solved. In addition to cancer therapy, mRNA vaccines and drugs can also be used in the treatment of infectious diseases, genetic diseases, regenerative medicine and anti-aging. mRNA vaccines and drugs are a very promising platform, and we believe that they will benefit cancer patients in the near future. 
		                        		
		                        		
		                        		
		                        	
7.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
		                        		
		                        			
		                        			ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC. 
		                        		
		                        		
		                        		
		                        	
8.Exercise Improves Nonalcoholic Fatty Liver Disease in T2DM Mice by Inhibiting Ferroptosis Through p38 MAPK Signaling Pathway
Bao-Wen ZHANG ; Ying LI ; Yuan GAO ; Ke-Yan SHENG ; Zhi WANG ; Xian-Juan KOU
Progress in Biochemistry and Biophysics 2024;51(11):2983-2997
		                        		
		                        			
		                        			ObjectiveTo explore the mechanism of treadmill exercise against type 2 diabetes mellitus (T2DM) with non-alcoholic fatty liver disease (NAFLD) based on the regulator effects of exercise on ferroptosis. MethodsEight 8-week-old male m/m mice were used as control group (Con, n=8), and db/db mice of the matched age were randomly divided into T2DM model group (db/db, n=8), exercise group (db+Exe, n=8), p38 mitogen-activated protein kinase (MAPK) inhibitor group (db+SB203580, n=8) and exercise combined with p38 MAPK inhibitor group (db+Exe+SB203580, n=8). After one-week adaptive feeding, the mice in the db+Exe group and db+Exe+SB203580 group underwent moderate intensity treadmill exercise for 40 min/d, 5 d/week lasting 8 weeks. The db+SB203580 group and db+Exe+SB203580 group were treated with SB203580 (a specific inhibitor of p38 MAPK) with a dose of 5 mg/kg, 5 d/week for 8 weeks. And the exercise intervention was performed 2 h later after the intraperitoneal injection of SB203580. The body weight and fasting blood glucose of mice were measured regularly every week during the experiment. After 24 h of the last intervention, the mice were weighted, the liver tissues were taken, weighted and the liver index was calculated. The pathological changes of liver were determined by Oil Red O and hematoxylin-eosin (HE) staining. The levels of blood lipids, liver function, Fe2+ and oxidative stress markers of liver were measured by enzyme linked immunosorbent assay (ELISA). The related mRNA expression levels of lipogenesis and inflammation were evaluated by quantitative reverse transcriptase-mediated PCR (qRT-PCR). The related protein expression levels of lipogenesis and ferroptosis in liver were determined by immunohistochemical (IHC) staining and Western blot. ResultsThe body weight, fasting blood glucose, liver index, blood lipid and transaminase levels in the db/db group were significantly increased compared with the Con group. HE and Oil Red O staining showed severe lipid accumulation and ballooning change in the liver of db/db mice. Biochemical tests showed that Fe2+ and MDA level of liver constitution homogenate increased, while GSH level decreased significantly. The results of qRT-PCR showed that the mRNA levels of MCP-1, IL-6, SREBF1 and ACC1 in liver tissue of db/db mice were all significantly increased. Western blot results showed that the expression levels of SREBF1, ACC1 increased, ferroptosis relative proteins were significantly decreased. The 8 weeks of exercise significantly reduced the rise in body weight, blood glucose, liver index and blood lipid levels in db/db mice. Exercise intervention also alleviated hepatic steatosis and reduced the expression levels of Fe2+, MDA, MCP-1, IL-6, ACC1 and SREBF1, upregulated the expression levels of GSH, NRF2, HO-1, SLC7A11 and GPX4 in liver tissue of db/db mice. The intervention of exercise combined with SB203580 significantly down-regulated the mRNA expression levels of ACC1, MCP-1, IL-6, reduced the levels of Fe2+ and MDA, and up-regulated the level of GSH in db/db mice. Compared with the db+Exe group, the expression of Fe2+, MDA, MCP-1, and SREBF1 in the liver of the db+Exe+SB203580 group mice significantly increased, while the expression level of GSH and expression levels of ferroptosis relative proteins also significantly decreased. In addition, compared with db+SB203580 group, the iron accumulation and lipid peroxidation in the liver of db+Exe+SB203580 group were significantly improved. ConclusionThe8-week treadmill exercise can effectively alleviate liver injury and steatosis, and its mechanism may be related to the inhibition of hepatocyte ferroptosis through p38 MAPK signal. 
		                        		
		                        		
		                        		
		                        	
9.Research progress of nanomedical drug delivery system based on aerobic glycolytic regulation for tumor therapy
Yi-jing LI ; Sheng-nan HUANG ; Zi-ang WANG ; Wei-wei ZHI ; Xia-li ZHU
Acta Pharmaceutica Sinica 2024;59(9):2509-2518
		                        		
		                        			
		                        			 Tumor is one of the serious problems threatening human health. There are some limitations in the delivery of commonly used tumor therapy technologies, and the therapeutic effect is not satisfactory, so new anti-tumor strategies need to be developed. The process of tumor cells using glycolysis to produce energy under aerobic conditions is called aerobic glycolysis, which is closely related to tumor growth, proliferation and metastasis, and can provide a new target spot for tumor treatment. Nano drug delivery system has been widely used in targeted tumor therapy because of its advantages of targeted drug delivery, improved anti-tumor efficacy and reduced toxic side effects. Numerous studies have shown that more and more nano drug delivery systems regulates aerobic glycolytic metabolism by targeting to potential targets such as signaling factors or reaction products of aerobic glycolytic process in tumors, and therefore enhance the anti-tumor effect. This paper reviews the application of nano drug delivery system in regulating tumor aerobic glycolysis, and provides theoretical references for realizing efficient targeted tumor therapy. 
		                        		
		                        		
		                        		
		                        	
		                				10.Identification and quality evaluation of germplasm resources of commercial Acanthopanax senticosus  based on DNA barcodes and HPLC
		                			
		                			Shan-hu LIU ; Zhi-fei ZHANG ; Yu-ying HUANG ; Zi-qi LIU ; Wen-qin CHEN ; La-ha AMU ; Xin WANG ; Yue SHI ; Xiao-qin ZHANG ; Gao-jie HE ; Ke-lu AN ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(7):2171-2178
		                        		
		                        			
		                        			 italic>Acanthopanax senticosus is one of the genuine regional herb in Northeast China. In this study, we identified the germplasm resources of commercial 
            
Result Analysis
Print
Save
E-mail