1.Construction and effectiveness evaluation of a closed-loop management system for dispensed oral drugs in the inpatient pharmacy based on SWOT analysis
Jia WANG ; Weihong GE ; Ruijuan XU ; Shanshan QIAN ; Xuemin SONG ; Xiangling SHENG ; Bin WU ; Li LI
China Pharmacy 2025;36(4):401-406
OBJECTIVE To improve the efficiency and quality of dispensed oral drug management in the inpatient pharmacy, and ensure the safety of drug use in patients. METHODS SWOT (strength, weakness, opportunity, threat) analysis method was used to analyze the internal strengths and weaknesses, as well as the external opportunities and threats in the construction of a closed-loop management system for dispensed oral drugs in the inpatient pharmacy of our hospital, and propose improvement strategies. RESULTS & CONCLUSIONS A refined, full-process, closed-loop traceability management system for dispensed oral drugs in the inpatient pharmacies was successfully established, which is traceable in origin, trackable in destination, and accountable in responsibility. After the application of this system, the registration rate of dispensed drug information and the correctness rate of registration content both reached 100%. The proportion of overdue drug varieties in the same period of 2024 decreased by 77.78% compared to March 2020, the inventory volume decreased by 29.50% compared to the first quarter of 2020, the per-bed medication volume decreased by 32.14% compared to the first quarter of 2020; the average workload per post in the same period of 2023 increased by 49.09% compared to 2019, the dispensing accuracy rate reached 100%, and the improvement rate of quality control problem increased by 25.25% compared to 2021. This system effectively improves the safety and accuracy of dispensed oral drug management in the inpatient pharmacy.
2.PRMT7 Regulates Adipogenic Differentiation of hBMSCs by Modulating IGF-1 Signaling
Qian GUO ; Jia QING ; Da-Zhuang LU ; Xu WANG ; Yang LI ; Hui ZHANG ; Ying-Fei ZHANG ; Yun-Song LIU ; Yong-Sheng ZHOU ; Ping ZHANG
Progress in Biochemistry and Biophysics 2024;51(6):1406-1417
ObjectiveProtein arginine methyltransferases (PRMTs) play pivotal roles in numerous cellular biological processes. However, the precise regulatory effects of PRMTs on the fate determination of mesenchymal stromal/stem cells (MSCs) remain elusive. Our previous studies have shed light on the regulatory role and molecular mechanism of PRMT5 in MSC osteogenic differentiation. This study aims to clarify the role and corresponding regulatory mechanism of PRMT7 during the adipogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Methods(1) Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured in a medium that induces adipogenesis. We used qRT-PCR and Western blot to monitor changes in PRMT7 expression during adipogenic differentiation. (2) We created a cell line with PRMT7 knocked down and assessed changes in PRMT7 expression and adipogenic capacity using Oil Red O staining, qRT-PCR and Western blot. (3) We implanted hBMSCs cell lines mixed with a collagen membrane subcutaneously into nude mice and performed Oil Red O staining to observe ectopic lipogenesis in vivo. (4) A cell line overexpressing PRMT7 was generated, and we examined changes in PRMT7 expression using qRT-PCR and Western blot. We also performed Oil Red O staining and quantitative analysis after inducing the cells in lipogenic medium. Additionally, we assessed changes in PPARγ expression. (5) We investigated changes in insulin-like growth factor 1 (IGF-1) expression in both PRMT7 knockdown and overexpressing cell lines using qRT-PCR and Western blot, to understand PRMT7’s regulatory effect on IGF-1 expression. siIGF-1 was transfected into the PRMT7 knockdown cell line to inhibit IGF-1 expression, and knockdown efficiency was confirmed. Then, we induced cells from the control and knockdown groups transfected with siIGF-1 in lipogenic medium and performed Oil Red O staining and quantitative analysis. Finally, we assessed PPARγ expression to explore IGF-1’s involvement in PRMT7’s regulation of adipogenic differentiation in hBMSCs. Results(1) During the adipogenesis process of hBMSCs, the expression level of PRMT7 was significantly reduced (P<0.01). (2) The adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group (P<0.001). (3) The ectopic adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group. (4) The adipogenic differentiation ability of the PRMT7 overexpression group was significantly weaker than that of the control group (P<0.01). (5) The expression level of IGF-1 increased after PRMT7 knockdown (P<0.000 1). The expression level of IGF-1 decreased after PRMT7 overexpression (P<0.000 1), indicating that PRMT7 regulates the expression of IGF-1. After siIGF-1 transfection, the expression level of IGF-1 in all cell lines decreased significantly (P<0.001). The ability of adipogenic differentiation of knockdown group transfected with siIGF-1 was significantly reduced (P<0.01), indicating that IGF-1 affects the regulation of PRMT7 on adipogenic differentiation of hBMSCs. ConclusionIn this investigation, our findings elucidate the inhibitory role of PRMT7 in the adipogenic differentiation of hBMSCs, as demonstrated through both in vitro cell-level experiments and in vivo subcutaneous transplantation experiments conducted in nude mice. Mechanistic exploration revealed that PRMT7’s regulatory effect on the adipogenic differentiation of hBMSCs operates via modulation of IGF-1 signaling pathway. These collective findings underscore PRMT7 as a potential therapeutic target for fatty metabolic disorders, thereby offering a novel avenue for leveraging PRMT7 and hBMSCs in the therapeutic landscape of relevant diseases.
3.Remote Virtual Companion via Tactile Codes and Voices for The People With Visual Impairment
Song GE ; Xuan-Tuo HUANG ; Yan-Ni LIN ; Yan-Cheng LI ; Wen-Tian DONG ; Wei-Min DANG ; Jing-Jing XU ; Ming YI ; Sheng-Yong XU
Progress in Biochemistry and Biophysics 2024;51(1):158-176
ObjectiveExisting artificial vision devices can be divided into two types: implanted devices and extracorporeal devices, both of which have some disadvantages. The former requires surgical implantation, which may lead to irreversible trauma, while the latter has some defects such as relatively simple instructions, limited application scenarios and relying too much on the judgment of artificial intelligence (AI) to provide enough security. Here we propose a system that has voice interaction and can convert surrounding environment information into tactile commands on head and neck. Compared with existing extracorporeal devices, our device can provide a larger capacity of information and has advantages such as lower cost, lower risk, suitable for a variety of life and work scenarios. MethodsWith the latest remote wireless communication and chip technologies, microelectronic devices, cameras and sensors worn by the user, as well as the huge database and computing power in the cloud, the backend staff can get a full insight into the scenario, environmental parameters and status of the user remotely (for example, across the city) in real time. In the meanwhile, by comparing the cloud database and in-memory database and with the help of AI-assisted recognition and manual analysis, they can quickly develop the most reasonable action plan and send instructions to the user. In addition, the backend staff can provide humanistic care and emotional sustenance through voice dialogs. ResultsThis study originally proposes the concept of “remote virtual companion” and demonstrates the related hardware and software as well as test results. The system can not only achieve basic guide functions, for example, helping a person with visual impairment to shop in supermarkets, find seats at cafes, walk on the streets, construct complex puzzles, and play cards, but also can meet the demand for fast-paced daily tasks such as cycling. ConclusionExperimental results show that this “remote virtual companion” is applicable for various scenarios and demands. It can help blind people with their travels, shopping and entertainment, or accompany the elderlies with their trips, wilderness explorations, and travels.
4.Development of a High-throughput Sequencing Platform for Detection of Viral Encephalitis Pathogens Based on Amplicon Sequencing
Li Ya ZHANG ; Zhe Wen SU ; Chen Rui WANG ; Yan LI ; Feng Jun ZHANG ; Hui Sheng LIU ; He Dan HU ; Xiao Chong XU ; Yu Jia YIN ; Kai Qi YIN ; Ying HE ; Fan LI ; Hong Shi FU ; Kai NIE ; Dong Guo LIANG ; Yong TAO ; Tao Song XU ; Feng Chao MA ; Yu Huan WANG
Biomedical and Environmental Sciences 2024;37(3):294-302
Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing. Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing. Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing. Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
5.Icariin plus curcumol enhances autophagy through the mTOR pathway and promotes cathepsin B-mediated pyroptosis of prostate cancer cells
Xu-Yun Wang ; Wen-Jing Xu ; Bo-Nan Li ; Tian-Song Sun ; Wen Sheng
Asian Pacific Journal of Tropical Biomedicine 2024;14(2):55-64
Objective: To examine the effect of icariin plus curcumol on prostate cancer cells PC3 and elucidate the underlying mechanisms. Methods: We employed the Cell Counting Kit 8 assay and colony formation assay to assess cell viability and proliferation. Autophagy expression was analyzed using monodansylcadaverine staining. Immunofluorescence and Western blot analyses were used to evaluate protein expressions related to autophagy, pyroptosis, and the mTOR pathway. Cellular damage was examined using the lactate dehydrogenase assay. Moreover, cathepsin B and NLRP3 were detected by co-immunoprecipitation. Results: Icariin plus curcumol led to a decrease in PC3 cell proliferation and an enhancement of autophagy. The levels of LC3- Ⅱ/LC3-Ⅰ and beclin-1 were increased, while the levels of p62 and mTOR were decreased after treatment with icariin plus curcumol. These changes were reversed upon overexpression of mTOR. Furthermore, 3-methyladenine resulted in a decrease in inflammatory cytokines, pyroptosis-related protein levels, and lactate dehydrogenase concentration, compared to the icariin plus curcumol group. Inhibiting cathepsin B reversed the regulatory effects of icariin plus curcumol. Conclusions: Icariin plus curcumol demonstrates great potential as a therapeutic agent for castration-resistant prostate cancer by enhancing autophagy via the mTOR pathway and promoting pyroptosis mediated by cathepsin B. These findings provide valuable insights into the molecular mechanisms underlying the therapeutic potential of icariin and curcumol for prostate cancer treatment.
6.The role of PINK1/Parkin-mediated mitophagy in mechanical imbalance-induced endplate cartilage degeneration
Quan ZHENG ; Ming-Fan WU ; Song SHAO ; Liang-Ye SUN ; Jun-Sheng XU
Journal of Regional Anatomy and Operative Surgery 2024;33(3):189-193
Objective To detect the changes of mitophagy level in rats with endplate cartilage degeneration induced by spinal instability,and explore the role of PINK1/Parkin-mediated mitophagy in endplate cartilage and intervertebral disc degeneration.Methods The rat spinal instability model was established by surgically removing the superspinal and interspinal ligaments of L2 to L5,and cleaning the bilateral articular processes of the L2 to L5.Eighteen SD rats were divided into the normal group,the degenerative group,and the carbonyl cyanide 3-chlorophenylhydrazone(CCCP)group,with 6 rats in each group.The rats in the normal group had no special treatment,the rats in the degenerative group constructed a rat spinal instability model,and the rats in the CCCP group were injected with 5 μL of CCCP(10 μmol/L)in the intervertebral disc after the construction of spinal instability model.The changes of histomorphology in the endplate cartilage and intervertebral disc were abserved by HE staining,and the change of extracellular matrix of endplate cartilage was observed by safranin O-fast green staining.RT-PCR detected the mRNA expression of type Ⅱ collagen(COL-2A),aggrecan(ACAN),PINK1 and Parkin in each group.The changes of the protein expression levels of COL-2A,ACAN,PINK1,Parkin and mitochondrial membrane proteins of Tomm20 and Timm23 were detected by Western blot.Results Compared with the normal group,the intervertebral disc nucleus pulposus of rats in the degenerative group was significantly destroyed and the secretion of extracellular matrix of endplate chondrocytes decreased;while the structure of intervertebral discs for rats in the CCCP group was more intact,and the secretion of extracellular matrix of endplate chondrocytes was significantly increased compared with that in the degenerative group.Compared with the normal group,the expression of COL-2A and ACAN in endplate cartilage tissues of rats in the degenerative group were significantly down-regulated(P<0.05),the expression of mitochon-drial autophagy-related genes of PINK1 and Parkin were significantly decreased(P<0.05),and the expression of mitochondrial membrane proteins of Tomm20 and Timm23 were increased(P<0.05).Compared with the degenerative group,the expression of COL-2A,ACAN,PINKI and Parkin in the endplate cartilage tissue of rats in the CCCP group were significantly up-regulated(P<0.05),and the protein levels of Tomm20 and Timm23 were significantly down-regulated(P<0.05).Conclusion Rat spinal instability leads to a decrease level of mitophagy mediated by PINK1/Parkin signaling pathway in endplate cartilage,thereby inducing endplate cartilage and intervertebral disc degeneration,and the activation of mitophagy can significantly reduce endplate cartilage and intervertebral disc degeneration.
7.Total saponins of Panax japonicus alleviates CCl4-induced acute liver injury in rats by regulating the PI3K/AktNF-κB signaling pathway
Guangyang WU ; Tianli SONG ; Lang TANG ; Yiming WANG ; Xu LIU ; Sheng HUANG
Journal of Southern Medical University 2024;44(2):244-251
Objective To investigate the protective effect of total saponins of Panax japonicus(TSPJ)against CCl4-induced acute liver injury(ALI)in rats and explore the underlying pharmacological mechanisms.Methods Male SD rat models of CCl4-induced ALI were given intraperitoneal injections of distilled water,100 mg/kg biphenyl bisabololol,or 50,100,and 200 mg/kg TSPJ during modeling(n=8).Liver functions(AST,ALT,TBil and ALP)of the rats were assessed and liver pathologies were observed with HE staining.Immunohistochemistry was used to detect the expressions of PI3K/Akt/NF-κB signaling pathway molecules in liver tissue;ELISA was used to determine the levels of T-SOD,GSH-Px,and MDA.Western blotting was performed to detect the expression levels of PI3K-Akt and SIRT6-NF-κB pathways in the liver tissue.Results Network pharmacological analysis indicated that the key pathways including PI3K/Akt mediated the therapeutic effect of TSPJ on ALI.In the rat models of ALI,treatments with biphenyl bisabololol and TSPJ significantly ameliorated CCl4-induced increase of serum levels AST,ALT,ALP,TBil and MDA and decrease of T-SOD and GSH-Px levels(all P<0.01).The rat models of ALI showed significantly increased expression of p-NF-κB(P<0.01),decreased expressions of PI3K,p-Akt and SIRT6 proteins,and elevated expression levels of p-NF-κB,TNF-α and IL-6 proteins in the liver,which were all significantly improved in the treatment groups(P<0.05 or 0.01).Conclusion TSPJ can effectively alleviate CCl4-induced ALI in rats by suppressing inflammatory responses and oxidative stress in the liver viaregulating the PI3K/Akt and SIRT6/NF-κB pathways.
8.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
9.Mechanism of action and experimental validation study of liver cancer treatment by Zheng Gan Decoction using bioinformatics
Tian-Li SONG ; Yi-Min WANG ; Xu LIU ; Sheng HUANG ; Hai-Xia LI
Chinese Pharmacological Bulletin 2024;40(7):1383-1391
Aim To invepredict the mechanism of ac-tion and targets of the traditional Chinese medicine compound Zheng Gan Decoction against hepatocellular carcinoma based on bioinformatics,and to experimen-tally verify the mechanism of anticancer action of Zheng Gan Decoction against DEN-induced hepatocellular carcinoma in a rat model.Methods The compounds of CZLF were collected from TCMSP and HERB Herbal Histology Database,and the potential targets of CZLF were predicted from Uniprot Protein Database,and the disease targets of hepatocellular carcinoma were searched with the help of OMIM,TTD,and Gene Cards databases,and then Venny analysis was per-formed on the targets of the disease-drugs,and then the protein-drug interactions(PI)of CZLF were mapped by String database,which was used for the study.After that,we used String database to draw pro-tein-protein interaction(PPI)network,R 4.1.3 soft-ware and Metascape database to enrich gene ontology(GO)and analyze KEGG signaling pathway for the core intersected targets,and finally,we used Cyto-scape 3.8.2 software for visualization to construct"compound-pathway-target-disease".Lastly,Cytoscape 3.8.2 software was used to visualize and construct a"compound-pathway-target-disease"network diagram,which was finally verified by Western blot experiment.Results Bioinformatics results showed that there were 171 common targets between Zheng Gan Decoction and diseases,and Zheng Gan Decoction might exert its an-ticancer effect through the main active ingredients such as lignans,quercetin,β-glutosterol,ivy saponin,etc.,as well as through the core protein targets such as CASP3,BCL2,AKT1,IL6,etc.,and the modula-tion of the Hippo signaling pathway and PI3K-Akt sig-naling pathway.The results of animal experiments showed that the expression content of apoptosis-related proteins caspase-3,BCL-2 and Bax was detected by Western blot,and the expression of Bax and caspase-3 proteins was up-regulated and the expression of Bcl-2 protein was down-regulated in the treatment group of Zheng Gan Decoction.Conclusions This study sug-gests that Zheng Gan Decoction may inhibit the growth of hepatocellular carcinoma cells and promote the apop-tosis of hepatocellular carcinoma cells by regulating the apoptosis-related proteins of caspase-3,Bcl-2,and Bax,so as to achieve the effect of anti-hepatocellular carcinoma.
10.Total saponins of Panax japonicus alleviates CCl4-induced acute liver injury in rats by regulating the PI3K/AktNF-κB signaling pathway
Guangyang WU ; Tianli SONG ; Lang TANG ; Yiming WANG ; Xu LIU ; Sheng HUANG
Journal of Southern Medical University 2024;44(2):244-251
Objective To investigate the protective effect of total saponins of Panax japonicus(TSPJ)against CCl4-induced acute liver injury(ALI)in rats and explore the underlying pharmacological mechanisms.Methods Male SD rat models of CCl4-induced ALI were given intraperitoneal injections of distilled water,100 mg/kg biphenyl bisabololol,or 50,100,and 200 mg/kg TSPJ during modeling(n=8).Liver functions(AST,ALT,TBil and ALP)of the rats were assessed and liver pathologies were observed with HE staining.Immunohistochemistry was used to detect the expressions of PI3K/Akt/NF-κB signaling pathway molecules in liver tissue;ELISA was used to determine the levels of T-SOD,GSH-Px,and MDA.Western blotting was performed to detect the expression levels of PI3K-Akt and SIRT6-NF-κB pathways in the liver tissue.Results Network pharmacological analysis indicated that the key pathways including PI3K/Akt mediated the therapeutic effect of TSPJ on ALI.In the rat models of ALI,treatments with biphenyl bisabololol and TSPJ significantly ameliorated CCl4-induced increase of serum levels AST,ALT,ALP,TBil and MDA and decrease of T-SOD and GSH-Px levels(all P<0.01).The rat models of ALI showed significantly increased expression of p-NF-κB(P<0.01),decreased expressions of PI3K,p-Akt and SIRT6 proteins,and elevated expression levels of p-NF-κB,TNF-α and IL-6 proteins in the liver,which were all significantly improved in the treatment groups(P<0.05 or 0.01).Conclusion TSPJ can effectively alleviate CCl4-induced ALI in rats by suppressing inflammatory responses and oxidative stress in the liver viaregulating the PI3K/Akt and SIRT6/NF-κB pathways.

Result Analysis
Print
Save
E-mail