1.Traditional Chinese Medicine Treats Sepsis by Regulating PI3K/Akt Pathway: A Review
Zhu LIU ; Jiawei WANG ; Jing YAN ; Jinchan PENG ; Mingyao XU ; Liqun LI ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):314-322
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms such as bacteria. In addition to the manifestations of systemic inflammatory response syndrome and primary infection lesions, critical cases often have manifestations of organ hypoperfusion. The morbidity and mortality of sepsis have remained high in recent years, which seriously affect the quality of life of the patients. The pathogenesis of sepsis is complicated, in which uncontrollable inflammation is a key mechanism. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway plays a key role in mediating inflammation in sepsis. The available therapies of sepsis mainly include resuscitation, anti-infection, vasoactive drugs, intensive insulin therapy, and organ support, which show limited effects of reducing the mortality. Therefore, finding new therapeutic drugs is a key problem to be solved in the clinical treatment of sepsis. In recent years, studies have shown that traditional Chinese medicine (TCM) can regulate the PI3K/Akt pathway via multiple pathways, multiple effects, and multiple targets to inhibit inflammation and curb the occurrence and development of sepsis, which has gradually become a hot spot in the prevention and treatment of sepsis. Moreover, studies have suggested that TCM has unique advantages in the treatment of sepsis. TCM can regulate the PI3K/Akt signaling pathway to inhibit inflammation, reduce oxidative stress, and control apoptosis in the prevention and treatment of sepsis. Despite the research progress, a systematic review remains to be performed regarding the TCM treatment of sepsis by regulating the PI3K/Akt signaling pathway. After reviewing relevant papers published in recent years, this study systematically summarizes the relationship between PI3K/Akt pathway and sepsis and the role of TCM in the treatment of sepsis, aiming to provide new ideas for the potential treatment of sepsis and the development of new drugs.
2.Traditional Chinese Medicine Intervention in Diarrhea-predominant Irritable Bowel Syndrome Based on Gut-brain Axis: A Review
Jinchan PENG ; Jinxiu WEI ; Zhu LIU ; Lijian LIU ; Liqun LI ; Chengning YANG ; Guangwen CHEN ; Jianfeng LI ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):311-319
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common digestive system disease with high prevalence and recurrence rates for years, high treatment costs, and serious impacts on patients' quality of life and economic burden. Therefore, it is important to explore new and safe treatment methods. The pathogenesis of IBS-D is complex, in which the gut-brain axis is a key factor. The gut-brain axis, a bidirectional signaling pathway connecting the gastrointestinal tract and the central nervous system, regulates gastrointestinal motility, secretion, and immune responses, playing a key role in the occurrence and development of IBS-D. Up to now, antidiarrheal agents, probiotics, and neurotransmitter modulators are the main methods for the clinical treatment of IBS-D. Although they can partially curb the progression of this disease, the therapeutic effects remain to be improved. Studies have confirmed that traditional Chinese medicine (TCM) has significant advantages in the treatment of IBS-D since it can regulate the gut-brain axis via multiple pathways and targets to improve the gastrointestinal motility and strengthen immune defenses. However, there is a lack of systematic reviews on the regulation of the gut-brain axis by TCM in the treatment of IBS-D. Based on the review of IBS-D-related articles published in recent years, this paper systematically summarized the relationship between the gut-brain axis and IBS-D and the role of TCM in the treatment, providing new ideas for the treatment of IBS-D.
3.Participation rate of voluntary blood donation among college students in China: a meta-analysis
Sheng WANG ; Jingquan XIE ; Fei QI
Chinese Journal of Blood Transfusion 2025;38(3):431-441
[Objective] To evaluate the participation rate of voluntary blood donation among college students in China by meta-analysis. [Methods] CNKI, Wan Fang Data, VIP, Pub Med, Web of science and Embase databases were searched to collect cross-sectional studies on the participation rate of voluntary blood donation among college students from the establishment of the database to August 10, 2024. Two researchers independently screened the literature, extracted the data and assessed the risk of bias of the included studies, and then used Stata16.1 software for meta-analysis. [Results] Finally, 36 articles were included, with a total of 37 348 research subjects and 11 541 college students participating in voluntary blood donation. The meta-analysis results showed that the participation rate of college students in voluntary blood donation in China was 34.0% [95% CI (31.0,37.0)]. The sub group analysis results showed that the participation rate of college students in voluntary blood donation in different regions was 36.1% [95% CI (24.1, 48.1)] in the eastern region, 30.2% [95% CI (26.8, 33.6)] in the central region, and 35.1% [95% CI (31.0, 39.3)] in the western region, with the eastern region higher than the central and western regions (P<0.001); The participation rate of college students in voluntary blood donation during different research periods was 32.0% before 2020 [95% CI (31.4, 32.6)] and 27.1% after 2020 [95% CI (26.3, 27.9)], with before 2020 higher than after 2020 (P<0.001); The participation rate of voluntary blood donation among college students of different genders is 36.8% for males [95% CI (32.8, 40.9)] and 28.5% for females [95% CI (24.8, 32.2)], with males higher than females (P<0.001); The participation rate of college students in voluntary blood donation among different academic backgrounds was 26.8% for associate degree students [95% CI (23.1, 30.5)], 26.4% for undergraduate students and above [95% CI (22.9, 29.8)], with no statistically significant difference (P>0.05); The participation rate of college students in voluntary blood donation among different majors is 46.4% [95% CI (34.4, 58.4)] for medical majors and 29.1% [95% CI (22.1, 36.0)] for non-medical majors, with medical majors higher than non-medical majors (P<0.001); The participation rate of college students in voluntary blood donation among different grades is 27.7% [95% CI (24.3, 31.2)] for second grade and below, 33.7% [95% CI (26.4, 40.9)] for third grade and above, with the latter higher than the former (P<0.001); The participation rate of college students in voluntary blood donation among different household registrations is 24.7% in urban areas [95% CI (21.5, 27.8)] and 26.8% in rural areas [95% CI (22.1, 31.4)], with no statistically significant difference (P>0.05); The participation rate of college students in voluntary blood donation among different family attitudes was 43.3% in support [95% CI (18.5, 68.2)] and 37.8% in non support [95% CI (26.6, 48.9)], with no statistical difference (P>0.05); The participation rate of college students in voluntary blood donation was 35.7% [95% CI (27.8, 43.5)] among those who were aware of the blood donation policies, and 24.7% [95% CI (13.7, 35.7)] among those who were not aware, with the former higher than the latter (P<0.001); The participation rate of voluntary blood donation among college students was 47.8% [95% CI (34.5, 61.0)] among those who were aware of blood donation knowledge and 38.0% [95% CI (22.1, 53.9) among those who were not aware, with the former higher than the latter (P<0.001). [Conclusion] There is still room for improvement in the rate of voluntary blood donation among college students, and the government should plan the overall situation of blood collection, and cooperate with colleges and universities to play the main role of donation publicity, and correctly identify potential donors, so as to improve the participation rate of voluntary blood donation among college students and promote the development of voluntary blood donation.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
7.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
8.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
9.Role of Autophagy in Ulcerative Colitis and Chinese Medicine Intervention: A Review
Maoguang HUANG ; Sheng XIE ; Jinxin WANG ; Feng LUO ; Yunyan ZHANG ; Yueying CHEN ; Shengnan CAI ; Xiaoyan HUANG ; Liqun LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):281-289
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with complex etiology. The pathogenesis of this disease, due to a combination of factors, is complex and has not yet been elucidated. Among them, intestinal mucosal barrier damage is the basic pathological change of UC. As a non-destructive response of cells, autophagy regulates intestinal mucosal immunity, inflammation, oxidative stress, and bacterial homeostasis through degradation and reabsorption to actively repair damaged intestinal mucosal barrier, exerting a key role in the occurrence and development of UC. The disease is mainly treated clinically with aminosalicylic acid preparations, glucocorticoids, and immunosuppressants. Western medicine treatment of the disease has a fast onset of effect, and the short-term efficacy is definite, but the long-term application is easy to be accompanied by more adverse reactions. Moreover, some drugs are expensive, bringing great physical and mental pain and economic burden to patients. Therefore, it is urgent to explore new therapies with stable efficacy and mild adverse effects. In recent years, a large number of studies have shown that Chinese medicine can regulate autophagy of the intestinal mucosa with multiple targets and effects and repair the intestinal mucosal barrier function, thereby inhibiting the development of UC. Many experiments have shown that the active ingredient or monomers and compound formulas of Chinese medicine can improve the immunity of the intestinal mucosa, inflammation, oxidative stress, and flora by regulating the level of autophagy to maintain the normal function of the intestinal mucosal barrier to effectively intervene in UC, providing a new measure for the prevention and treatment of UC. However, there is a lack of systematic review of Chinese medicine in regulating the level of autophagy in the intestinal mucosa for the prevention and treatment of UC. Therefore, based on the current research on UC, autophagy process, and Chinese medicine treatment, this article reviewed the relationship of autophagy and its key target proteins with UC to clarify the key role of autophagy in UC production and systematically summarized Chinese medicines targeting the regulation of autophagy to treat UC in recent years to provide new ideas for the treatment and drug development of UC.
10.Chinese expert consensus on the diagnosis and treatment of chronic cough after lung surgery
Gaoxiang WANG ; Junqiang ZHANG ; Mingsheng WU ; Sheng WANG ; Yongfu ZHU ; Xuejiao LI ; Zhengwei CHEN ; Mingran XIE
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(01):1-10
In recent years, the number of lung surgeries has increased year by year, and the number of patients with postoperative cough has also increased gradually. Chronic cough after lung surgery seriously affects patients' quality of life and surgical outcome, and has become one of the clinical problems that clinicians need to solve. However, there is currently no guideline or consensus for the treatment of chronic cough after lung surgery in China, and there is no standardized treatment method. Therefore, we searched databases such as PubMed, Web of Science, CNKI, and Wanfang databases ect. from 2000 to 2023 to collected relevant literatures and research data, and produced the first expert consensus on chronic cough after lung surgery in China by Delphi method. We gave 11 recommendations from five perspectives including timing of chronic cough treatment, risk factors (surgical method, lymph node dissection method, anesthesia method), prevention methods (preoperative, intraoperative, postoperative), and treatment methods (etiological treatment, cough suppressive drug treatment, traditional Chinese medicine treatment, and postoperative physical therapy). We hope that this consensus can improve the standardization and effectiveness of chronic cough treatment after lung surgery, provide reference for clinical doctors, and ultimately improve the quality of life of patients with chronic cough after lung surgery.

Result Analysis
Print
Save
E-mail