1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Analysis of HA and NA gene variation characteristics of A(H1N1)pdm09 influenza virus in Shandong Province from 2022 to 2023
Ju-Long WU ; Shu ZHANG ; Yu-Jie HE ; Lin SUN ; Shao-Xia SONG ; Wen-Kui SUN ; Ti LIU
Chinese Journal of Zoonoses 2024;40(5):471-477
This study was aimed at characterizing the variations in hemagglutinin(HA)and neuraminidase(NA)genes of influenza virus subtype A(H1N1)pdm09 isolated during the 2022-2023 influenza monitoring year in Shandong Province,to provide a scientific basis for influenza prevention and control.A total of 14 A(H1N1)pdm09 subtype influenza strains were se-lected randomly by city by the influenza monitoring network laboratory.The vaccine strains recommended by the WHO served as references for whole gene sequencing analysis.A fluorescence method was used to conduct neuraminidase inhibition experi-ments to evaluate drug sensitivity.The A(H1N1)pdm09 influenza virus in Shandong Province,2022-2023 belonged to the 5a.2a evolutionary cluster in the 6B.1A branch.Nucleotide sequence analysis indicated that the HA and NA genes were closely re-lated to the Northern Hemisphere vaccine strain A/Victoria/2570/2019 in the years 2021-2023,and showed homology of 98.5%to 98.7%and 98.8%to 99.1%,respectively.Amino acid sequence analysis revealed 20 amino acid sequence mutations in the HA protein,but only one virus strain was found to have antigen drift,and three virus strains showed loss of HA protein glycosylation sites.No mutations were found at important sites affecting NA enzymes.The neuraminidase inhibition experiment indicated viral sensitivity to anti-influenza drugs.In conclusion,the monitored virus strains had high overall homology with vac-cine strains but showed some amino acid variation.In the future,continued monitoring of the genetic variation characteristics of influenza viruses will be necessary to understand the risk of influenza epidemics,and the effectiveness of influenza vaccines and therapeutic drugs.
6.Monitoring and analysis of avian influenza virus in poultry related environments in Shandong Province from 2020 to 2023
Ju-Long WU ; Shao-Xia SONG ; Yu-Jie HE ; Shu ZHANG ; Lin SUN ; Wen-Kui SUN ; Ti LIU ; Zeng-Qiang KOU
Chinese Journal of Zoonoses 2024;40(8):768-773
This study was aimed at understanding the pollution distribution pattern of avian influenza virus in the environ-ment in poultry related places in Shandong Province,to provide a scientific basis for the prevention,control,prediction,and early warning regarding human infection with avian influenza.From 2020 to 2023,6 523 environmental samples were collected in 16 cities in Shandong Province from four types of poultry-related places.Fluorescence quantitative PCR was used for nucleic acid testing of influenza A virus.Positive samples were further identified for the H5,H7,and H9 subtypes of avian influenza virus.The epidemiological characteristics of avian influenza viruses in the poultry related environment of Shandong Province were described,and inter-rate comparisons were performed with the x2 test.During 2020-2023,6 523 environmental samples were collected,and 1 007 cases positive for avian influenza virus were detected,with a positivity rate of 15.44%.H5,H7,and H9 subtypesand mixed infections were detected.H9 was the main subtype(88.48%)in positive specimens.A significant difference in positivity rates was observed among regions(x2=431.956,P<0.001),and the highest positivity rate was 28.93%.Significant differences in positivity rates were observed among monitoring sites(x2=304.604,P<0.001),sample types(x2=109.678,P<0.001),and quarters(x2=64.963,P<0.001).The positive detection rate was highest at monitoring sites in urban and rural live poultry markets(20.12%),and the positive detection rate of samples collected by wiping meat cut-ting board surfaces was higher than that of other samples(22.56%).The peak positive detection rate occurred in spring(20.31%).Widespread contamination with avian influenza virus was observed in poultry environments in Shandong Prov-ince.The H9 subtype,the main pathogen,coexisted with H5 and H7 subtypes,thus posing a risk of human infection with avian influenza.Therefore,prevention and control of avian influenza must be strengthened in key seasons,areas,places,and links.
7.Clinical Characteristics and Risk Factors of Infection in Hospitalized Patients with Multiple Myeloma with New Generation Therapies
Li-Ping YANG ; Xin-Yi LU ; Xin-Wei WANG ; Qiong YAO ; Lin-Yu LI ; Jie ZHAO ; Shao-Long HE ; Wei-Wei TIAN
Journal of Experimental Hematology 2024;32(6):1790-1797
Objective:To evaluate the clinical characteristics and risk factors of infections occurring during hospitalization in patients with multiple myeloma (MM) treated with new generation therapies (including immuno-modulatory drugs,proteasome inhibitors and monoclonal antibodies).Methods:The clinical data were collected from 155 patients with multiple myeloma who were treated in Shanxi Bethune Hospital from March,2017 to March,2022 and were retrospectively analyzed.For this study,the following therapies were considered to be new generation therapies:lenalidomide,pomadomide,bortezomib,ixazomib,daratumumab. The clinical characteristics and risk factors of infection were analyzed.Results:A total of 155 patients were included in this study.The median follow-up time was 20 months.Of 155 patients with MM,242 infection episodes were identified.Among the 242 infections,the incidence of clinically defined infection (CDI)was the highest (186,76.86%),followed by microbiologically defined infection (MDI)in 50 cases (20.66%),and fever at unknown focus (FUF)in 6 cases (2.48%).35 cases (14.46%)of bacteria,10 cases (4.13%)of viruses,and 5 cases (2. 07%)of fungi were clearly infected.The most common site of infection was the lower respiratory tract in 90 cases (37.19%),the upper respiratory tract in 83 cases (34.30%),and the digestive tract in 27 cases (11.16%).All-cause mortality was 8.39%(13/155).In univariate analysis,there was a higher correlation between ISS stage Ⅲ,the number of treatment lines ≥2,frail and infected patients with multiple myeloma.In multivariate analysis,ISS stage Ⅲ(OR=2.96,95%CI:1.19-7.40,P=0.02),the number of treatment lines ≥2 (OR=2.91,95%CI:1.13-7.51,P=0.03)and frail (OR=3.58,95%CI:1.44-8.89,P=0. 01)were risk factors for infection in patients with multiple myeloma in the era of new drugs.Conclusion:Patients with multiple myeloma treated with new agents are prone to bacterial infection during hospitalization.ISS stage Ⅲ,lines of therapy(≥2)and frail were associated with high risk for infection.
8.Analysis of metabolites of nobiletin in rats in vivo based on characteristic ions
Zhe LI ; Yu-Qing WANG ; Dong-Xue WU ; Shuang-Feng LI ; Ya-Nan LI ; Shao-Ping WANG ; Jia-Yu ZHANG ; Long DAI
Chinese Traditional Patent Medicine 2024;46(6):1800-1809
AIM To analyze the metabolites of nobiletin in rats in vivo based on characteristic ions.METHODS Ten rats were assigned into administration group and control group,and given intragastric administration of the 0.5%CMC-Na suspension of nobiletin(250 mg/kg)and 0.5%CMC-Na solution,respectively,after which plasma,urine and feces were collected,solid phase extraction method was adopted in pretreatment,UHPLC-HRMS analysis was performed.The candidate metabolites were systematically described according to diagnostic product ions,chromatographic retention time,accurate molecular weight and neutral loss fragments,after which accurate metabolites were obtained in the established metabolite data set with-CH3(m/z 15)characteristic ions as a baits.RESULTS A total of 64 metabolites were identified,whose main metabolic pathways were glucuronidation,sulfation,hydrogenation and their compound reactions.CONCLUSION This experiment elucidates the metabolites of nobiletin in rats in vivo,which provides a new reference for its further development.
9.Development and validation of a stromal-immune signature to predict prognosis in intrahepatic cholangiocarcinoma
Yu-Hang YE ; Hao-Yang XIN ; Jia-Li LI ; Ning LI ; Si-Yuan PAN ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Peng-Cheng WANG ; Chu-Bin LUO ; Rong-Qi SUN ; Jia FAN ; Jian ZHOU ; Zheng-Jun ZHOU ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2024;30(4):914-928
Background:
Intrahepatic cholangiocarcinoma (ICC) is a highly desmoplastic tumor with poor prognosis even after curative resection. We investigated the associations between the composition of the ICC stroma and immune cell infiltration and aimed to develop a stromal-immune signature to predict prognosis in surgically treated ICC.
Patients and methods:
We recruited 359 ICC patients and performed immunohistochemistry to detect α-smooth muscle actin (α-SMA), CD3, CD4, CD8, Foxp3, CD68, and CD66b. Aniline was used to stain collagen deposition. Survival analyses were performed to detect prognostic values of these markers. Recursive partitioning for a discrete-time survival tree was applied to define a stromal-immune signature with distinct prognostic value. We delineated an integrated stromal-immune signature based on immune cell subpopulations and stromal composition to distinguish subgroups with different recurrence-free survival (RFS) and overall survival (OS) time.
Results:
We defined four major patterns of ICC stroma composition according to the distributions of α-SMA and collagen: dormant (α-SMAlow/collagenhigh), fibrogenic (α-SMAhigh/collagenhigh), inert (α-SMAlow/collagenlow), and fibrolytic (α-SMAhigh/collagenlow). The stroma types were characterized by distinct patterns of infiltration by immune cells. We divided patients into six classes. Class I, characterized by high CD8 expression and dormant stroma, displayed the longest RFS and OS, whereas Class VI, characterized by low CD8 expression and high CD66b expression, displayed the shortest RFS and OS. The integrated stromal-immune signature was consolidated in a validation cohort.
Conclusion
We developed and validated a stromal-immune signature to predict prognosis in surgically treated ICC. These findings provide new insights into the stromal-immune response to ICC.
10.Association between blood pressure during 12-28 weeks gestation and pre-eclampsia: predictive value of blood pressure trajectories constructed by latent class growth modeling.
Wei CAI ; Xin ZHOU ; Ning YANG ; Xiu Long NIU ; Guo Hong YANG ; Xin ZHANG ; Wei WANG ; Shao Bo CHEN ; Yu Ming LI
Chinese Journal of Cardiology 2023;51(2):164-171
Objective: To explore the associations between blood pressure trajectories during pregnancy and risk of future pre-eclampsia in a large cohort enrolling pregnant women at gestational age of ~12 weeks from community hospitals in Tianjin. Latent class growth modeling (LCGM) was used to model the blood pressure trajectories. Methods: This was a large prospective cohort study. The study enrolled pregnant women of ~12 weeks of gestation in 19 community hospitals in Tianjin from November 1, 2016 to May 30, 2018. We obtained related information during 5 antepartum examinations before gestational week 28, i.e., week 12, week 16, week 20, week 24 and week 28. LCGM was used to model longitudinal systolic (SBP) and diastolic blood pressure (DBP) trajectories. For the association study, the predictors were set as SBP and DBP trajectory membership (built separately), the outcome was defined as the occurrence of preeclampsia after 28 weeks of gestation. Results: A total of 5 809 cases with known pregnant outcomes were documented. After excluding 249 cases per exclusion criteria, 5 560 cases with singleton pregnancy were included for final analysis. There were 128 cases preeclampsia and 106 cases gestational hypertension in this cohort. Univariate logistic regression and multivariate logistic regression showed the higher baseline SBP level and DBP level were related with increased risk of preeclampsia. Four distinctive SBP trajectories and DBP trajectories from 12 weeks to 28 weeks of gestation were identified by LCGM. After controlling for potential confounders (baseline BMI, being primipara or not, white blood cell counts, hemoglobin level, platelet counts and alanine aminotransferase level), the OR for SBP latent classification trajectory_ 4 was 4.023 (95%CI: 2.368 to 6.835, P<0.001), and the OR for SBP latent classification trajectory_3 was 1.854 (95%CI: 1.223 to 2.811, P=0.004). Logistic regression showed that: using the DBP latent classification trajectory_1 as the reference group, the OR for DBP latent classification trajectory_4 was 4.100 (95%CI: 2.571 to 6.538, P<0.001), and 2.632 (95%CI: 1.570 to 4.414, P<0.001) for DBP latent classification trajectory_2. After controlling for potential confounders (baseline BMI, being primipara or not, white blood cell counts, hemoglobin level, platelet counts and alanine aminotransferase level), the OR for DBP_traj_4 was 2.527 (95%CI: 1.534 to 4.162, P<0.001), and the OR for DBP_traj_3 was 1.297 (95%CI: 0.790 to 2.128, P=0.303), and 2.238 (95%CI: 1.328 to 3.772, P=0.002) for DBP_traj_2. Therefore, BP trajectories from 12 weeks to 28 weeks identified by LCGM served as novel risk factors that independently associated with the occurrence of preeclampsia. Receiver operating characteristic (ROC) curve analysis showed incremental diagnostic performance by combing baseline blood pressure levels with blood pressure trajectories. Conclusion: By applying LCGM, we for the first time identified distinctive BP trajectories from gestational week 12 to 28, which can independently predict the development of preeclampsia after 28 weeks of gestation.
Female
;
Humans
;
Pregnancy
;
Infant
;
Blood Pressure
;
Pre-Eclampsia/diagnosis*
;
Prospective Studies
;
Gestational Age
;
Alanine Transaminase
;
Hemoglobins

Result Analysis
Print
Save
E-mail