1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Research progress on impact of micro/nanoplastics exposure on reproductive health
Yan HUANG ; Yuanyuan HUANG ; Yanxi ZHUO ; Yiqin LIN ; Qipeng LI ; Xiaofeng ZHENG ; Wenxiang WANG ; Yuchen LI ; Wenya SHAO ; Henggui CHEN
Journal of Environmental and Occupational Medicine 2025;42(4):490-496
Micro/nanoplastics (MNPs), recognized as emerging environmental pollutants, are widely distributed in natural environments. Due to their small particle size and significant migratory capacity, MNPs can infiltrate diverse environmental matrices, then invade and accumulate in the organism via the skin, respiration, and digestion. Recently, concerns have grown over the detrimental effects and potential toxicity of MNPs on reproductive health. This review summarized published epidemiological and toxicological studies related to MNPs exposure and their effects on reproductive health. Firstly, this review critically examined the current landscape of epidemiological evidence and found that MNPs (e.g., polystyrene, polypropylene, polyvinyl chloride, polyethylene, etc.) are present in various biological specimens from both males and females, and their presence may be associated with an increased risk of reproductive disorders. Secondly, extensive toxicological studies revealed that MNPs exposure induces reproductive health damage through mechanisms such as disrupting the microstructure of reproductive organs and altering molecular-level expressions. Oxidative stress, inflammatory responses, and apoptosis are identified as potential links between MNPs exposure and reproductive damage. Finally, this review addressed the prevalent shortcomings in existing studies and proposed future directions to tackle the challenges posed by MNPs-induced reproductive harm. These insights aim to inform strategies for safeguarding public reproductive health and ecological security, providing a scientific foundation for mitigating risks associated with MNPs pollution.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
5.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
6.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
7. Mechanism of EGFR inhibitor AG1478 combined with oxaliplatin in inhibiting PI3K/AKT pathway and promoting autophagy in HI 975 cells
Jin-Qing HUANG ; Yang LI ; Dong-Xue WEI ; Shan JIANG ; Shao-Feng JIANG
Chinese Pharmacological Bulletin 2024;40(2):242-278
Aim To explore the effect of oxaliplatin combined with epidermal growth factor receptor tyrosine kinase inhibitor AG1478 on autophagy in non-small cell lung cancer H1975 cells. Methods H1975 cells were cultured in vitro using gradient concentrations of AG1478 (0, 5, 10, 15, 20, 25, 30, 35, 40 jjimol • IT
8.Serum Metabolomics Characteristics of Chronic Atrophic Gastritis Patients with Liver-Stomach Qi Stagnation Syndrome and Spleen-Stomach Weakness Syndrome
Yu-Yi CHEN ; Juan-Juan LI ; Hong-Liang WANG ; Shao-Ju GUO ; Bin HUANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):7-16
Objective To analyze the metabolomics characteristics of chronic atrophic gastritis(CAG)patients with liver-stomach qi stagnation and spleen-stomach weakness syndromes based on non-targeted metabolomics technology,and to identify the serum differentiated metabolites related to traditional Chinese medicine(TCM)syndrome of CAG patients,so as to provide a reference for the objectification of syndrome differentiation.Methods Sixty patients with CAG were included,including 30 cases of liver-stomach qi stagnation syndrome and 30 cases of spleen-stomach weakness syndrome.Fasting blood of 5 mL was collected from the cubital vein of patients in the two groups,and the serum levels of metabolites were detected by ultra-high-performance liquid chromatography-mass spectrometry(UPLC-MS)methods.The principal component analysis(PCA),orthogonal partial least squares-discriminant analysis(OPLS-DA),and cluster analysis were used to screen the differentiated metabolites of CAG patients with liver-stomach qi stagnation syndrome and spleen-stomach weakness syndrome.Finally,metabolite pathway analysis was performed for the obtained differentiated metabolites using the KEGG database.Results The results for the screening of differentiated metabolites showed that significant differences of amino acid derivatives and small peptide metabolites were presented between CAG patients with liver-stomach qi stagnation syndrome and CAG patients with spleen-stomach weakness syndrome.The amino acid derivatives consisted of N-acetylglycine,histamine,O-phosphoserine,selenomethylselenocysteine,and methyl-tyrosine.And the small peptide metabolites consisted of tyrosine-leucine-phenylalanine,histidine-alanine-glutamate-lysine,L-asparagine-L-proline-L-serine,and L-isoleucine-L-isoleucine.Conclusion Differences in amino acid metabolism exist between CAG patients with liver-stomach qi stagnation syndrome and those with spleen-stomach weakness syndrome,and metabolites such as N-acetylglycine,intermethyltyrosine,and O-phosphoserine may be the potential biomarkers for distinguishing liver-stomach qi stagnation syndrome from spleen-stomach weakness syndrome in CAG patients.
9.Construction of an animal model for treating early postoperative infected bacterial biofilms by irrigating after internal fixation
Jiacheng HUANG ; Xinxin SHAO ; Haomiao LI ; Shaohua DU ; Shuangwu DAI
Chinese Journal of Tissue Engineering Research 2024;28(23):3704-3708
BACKGROUND:The treatment for bacterial biofilms after internal fixation surgery is a very difficult problem in clinic.It is a great significance to establish an animal model of irrigation for treating bacterial biofilms in the early stage after internal fixation surgery. OBJECTIVE:To establish an animal model for treating bacterial biofilms with different drugs through irrigation in early stage after internal fixation surgery. METHODS:Six New Zealand white rabbits were selected.Bilateral femoral surfaces were exposed and drilled holes were made,and bone plates colonized with Pseudomonas aeruginosa(experimental group)and blank bone plates(blank control group)were implanted around the drilled holes on one side,and two drainage tubes were retained and fixed to serve as the"inlet"and"outlet,"respectively.The model was immersed for a certain period of time after simulated perfusion before rinsing.After the simulated irrigation,the plates were soaked for a certain time before washing.At 5 days postoperatively,the rabbits were observed for body temperature,wound condition,bacterial culture of drainage fluid,and crystalline violet staining and scanning electron microscopy of the bone plate. RESULTS AND CONCLUSION:Six rabbits had difficulty in moving the affected limbs after surgery and showed elevated body temperature at 2-4 days after surgery.Local swelling could be touched at some wounds in the experimental group,and the wounds in the blank control group healed well.The results of bacterial culture of drainage fluid showed that Pseudomonas aeruginosa diffused or spread in the experimental group.At 5 days after surgery,the plate in the experimental group became purple shown by crystalline violet staining,and the absorbance value at 570 nm detected by the microplate reader was 2.621±0.088,indicating the presence of bacteria.Scanning electron microscopy at 5 days after surgery showed that a large number of bacterial microcolonies appeared on the surface of the plate in the experimental group,forming a highly inhomogeneous three-dimensional structure similar to the"mushroom-like"and"tower-like"structures,with filamentous water channels connecting the"mushroom-like"structures,which were typical biofilm structures with high densities,while no obvious colonies were seen in the blank control group.Overall,this animal model simulates the state of infected biofilm formation due to early infection after internal fixation and provides an available method of irrigation with different drugs.
10.Construction of a therapeutic effect prediction model for bronchial asthma
Qidong HUANG ; Minxi LI ; Yilong LI ; Wanqi SHAO ; Shumei ZHAO ; Xiaoyan GONG ; Lindu ZHAO ; Lanying LIU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(5):729-740
Objective We aimed to investigate the feasibility and method of constructing a traditional Chinese medicine(TCM)curative effect prediction model based on the data of Kechuanting acupoint plastering therapy in the treatment of bronchial asthma(asthma).Methods Data from the Chronic Disease Management Research Platform of 303 patients with asthma who were treated with Kechuanting acupoint plastering therapy for 6 weeks in the Department of Acupuncture and Rehabilitation of Jiangsu Hospital of Traditional Chinese Medicine from June to August 2018 to 2021 were selected.We used Phyton 3.10 for statistical analysis.After data preprocessing,the influencing factors were used to build models by Logistic regression,support vector machine,K-means clustering algorithm,Bayes algorithm,random forest method and Light gradient boosting machine(LightGBM)respectively,with the improvement of asthma control test score(ACT),forced expiratory volume in one second(FEV1)and exhaled nitric oxide(FeNO)as the outcome indicators.Then,the models were compared and analyzed.Subsequently,the superior model was used to establish the efficacy prediction model and verify its stability to obtain the accuracy rate and eliminate the relatively important factors.Results The accuracy rate of the Kechuanting acupoint plastering therapy curative effect prediction model established by the LightGBM model was more than 70%.Five important factors were selected,including allergic history,tabacco and alcohol abuse,plastering duration,ACT before treatment,and FeNO before treatment.According to the classification analysis and the relationship between the important factors and the outcome indicators,Kechuanting acupoint plastering therapy significantly improved the ACT of patients with no history of allergy,no tabacco and alcohol abuse,and poor ACT:5-15 points(P<0.05).Furthermore,Kechuanting acupoint plastering therapy improved FeNO more significantly in patients with more than 3 years of treatment than those with no more than 3 years(P<0.05).However,Kechuanting acupoint plastering therapy only improved FeNO in a few patients with poor asthma control levels(P<0.05)and severe airway inflammation(FeNO>50×10-9)(P>0.05).Conclusion Acupoint plastering application has a significant effect on improving the control level of asthma,but its effect on improving airway inflammation is limited.It is feasible to use data from the chronic disease management research platform to construct the prediction model.After optimization and testing,the predictive model established based on the data of this study may provide an effective evaluation tool for targeted clinical treatment.

Result Analysis
Print
Save
E-mail