1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Role and mechanism of platelet-derived growth factor BB in repair of growth plate injury
Hongcheng PENG ; Guoxuan PENG ; Anyi LEI ; Yuan LIN ; Hong SUN ; Xu NING ; Xianwen SHANG ; Jin DENG ; Mingzhi HUANG
Chinese Journal of Tissue Engineering Research 2025;29(7):1497-1503
BACKGROUND:In the initial stage of growth plate injury inflammation,platelet-derived growth factor BB promotes the repair of growth plate injury by promoting mesenchymal progenitor cell infiltration,chondrogenesis,osteogenic response,and regulating bone remodeling. OBJECTIVE:To elucidate the action mechanism of platelet-derived growth factor BB after growth plate injury. METHODS:PubMed,VIP,WanFang,and CNKI databases were used as the literature sources.The search terms were"growth plate injury,bone bridge,platelet-derived growth factor BB,repair"in English and Chinese.Finally,66 articles were screened for this review. RESULTS AND CONCLUSION:Growth plate injury experienced early inflammation,vascular reconstruction,fibroossification,structural remodeling and other pathological processes,accompanied by the crosstalk of chondrocytes,vascular endothelial cells,stem cells,osteoblasts,osteoclasts and other cells.Platelet-derived growth factor BB,as an important factor in the early inflammatory response of injury,regulates the injury repair process by mediating a variety of cellular inflammatory responses.Targeting the inflammatory stimulation mediated by platelet-derived growth factor BB may delay the bone bridge formation process by improving the functional activities of osteoclasts,osteoblasts,and chondrocytes,so as to achieve the injury repair of growth plate.Platelet-derived growth factor BB plays an important role in angiogenesis and bone repair tissue formation at the injured site of growth plate and intrachondral bone lengthening function of uninjured growth plate.Inhibition of the coupling effect between angiogenesis initiated by platelet-derived growth factor BB and intrachondral bone formation may achieve the repair of growth plate injury.
3.2024 annual report of interventional treatment for congenital heart disease
Changdong ZHANG ; Yucheng ZHONG ; Geng LI ; Jun TIAN ; Gejun ZHANG ; Nianguo DONG ; Yuan FENG ; Daxin ZHOU ; Yongjian WU ; Lianglong CHEN ; Xiaoke SHANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(07):909-918
In recent years, with the continuous development and increasing maturity of interventional techniques, interventional treatment for congenital heart disease (CHD) has been progressively disseminated to county- and city-level hospitals in China. Concurrently, the standardized management of adult CHD (particularly patent foramen ovale) and the lifelong management of complex CHD are gaining increasing clinical attention, while the emergence of new techniques and products continuously advances the discipline. This article aims to review the new progress made in the field of interventional treatment for congenital heart disease in China during 2024. It specifically reviews and analyzes the following key aspects: (1) annual statistics on interventional closure procedures for CHD; (2) recent insights into patent foramen ovale closure; (3) advances in transcatheter pulmonary valve replacement; (4) interventional treatment and lifelong management strategies for complex CHD; (5) new interventional techniques for acquired heart disease; and (6) the application of artificial intelligence in CHD management. Through the synthesis and discussion of these topics, this article seeks to provide a detailed analysis of the current landscape of interventional treatment for CHD in China and project its future development trends.
4.Effects of Aβ receptor PirB on mouse astrocyte proliferation and reactive astrogliosis
Yuan-Jie ZHAO ; Zhen-Jie TUO ; Pei-Jun SHANG ; Jin-Wen YANG ; Xiao-Hua ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(1):82-90
Objective To observe the effects of amyloid-β(Aβ)receptor PirB on mouse astrocyte proliferation and reactive astrogliosis in vitro.Methods Mouse primary astrocytes were cultured,and divided into control group,Aβ group,Aβ+0.2 μmol/L PEP group,Aβ+0.4 μmol/L PEP group,Aβ+Fluspirilene group,Aβ+GFP-LV group,and Aβ+mPirB-LV group.The mouse astrocytes were treated with soluble PirB extracellular peptide PEP or PirB inhibitor Fluspirilene,respectively,to inhibit endogenous PirB receptor,or overexpressed PirB gene via lentivirus transfection and then treated with Aβ1-42 oligomers.The proliferation of astrocytes was observed by RTCA and EdU methods,and the mRNA expression levels of S-100 calcium-binding protein B(S-100β),Vimentin,Nestin and amyloid precursor protein(APP)associated with reactive astrogliosis of astrocytes were observed by real-time PCR,and the expression level of glial fibrillary acid protein(GFAP)was detected by Western-blotting.Results The results of RTCA monitoring showed that normalized cell index(NCI)values of each group decreased sharply after treatment,and then increased gradually and tended to be stable.The results of EdU staining showed that the proliferative activity of astrocytes was significantly enhanced in the Aβ group(P<0.05)compared with control group;Compared with Aβ group,cell proliferation activity in Aβ + 0.2 μmol/L PEP group,Aβ+0.4 μmol/L PEP group and Aβ+Fluspirilene group were significantly decreased(P<0.01 or P<0.001).The results of real-time PCR showed that compared with control group,mRNA expressions of GFAP,S-100β,Vimentin,Nestin,APP and PirB in Aβ group were significantly increased(P<0.05);Compared with Aβ group,mRNA expressions of GFAP,S-100β,Vimentin,Nestin,APP and PirB in Aβ+0.4 μmol/L PEP group were significantly decreased(P<0.01);Compared with Aβ+GFP-LV group,mRNA expressions of GFAP,S-100β,Vimentin,Nestin,APP and PirB in Aβ +mPirB-LV group were significantly increased(P<0.05).The results of Western blotting showed that compared with control group,the expression of GFAP in Aβ group was significantly increased(P<0.05);Compared with Aβ group,the expression of GFAP in Aβ+0.4 μmol/L PEP group was significantly decreased(P<0.05).Conclusions PirB is an upstream molecule which could regulate astrocyte proliferation and reactive astrogliosis,and inhibiting PirB receptor in astrocytes may be a potential treatment for Alzheimer's disease.
5.Annual review of clinical research on extracorporeal life support in 2023
Hongling ZHANG ; Yuan YU ; Dechang CHEN ; You SHANG
Chinese Critical Care Medicine 2024;36(2):118-123
The clinical research in the field of extracorporeal life support (ECLS) in 2023 has focused on the efficacy of veno-arterial extracorporeal membrane oxygenation (ECMO) in patients with infarct-related cardiogenic shock. Additionally, the research also explored the efficacy of prone positioning during veno-venous ECMO, transfusion strategies, and the impact of obesity on outcomes. Awake veno-venous ECMO has shown novel therapeutic potential, but its optimal practice methods and management strategies remain to be determined. In in-hospital cardiac arrest patients, extracorporeal cardiopulmonary resuscitation has demonstrated higher survival rates and better neurological recovery compared to conventional cardiopulmonary resuscitation. The effectiveness of extracorporeal carbon dioxide removal varies among patients with different types of respiratory failure. Future research should focus on optimizing the application strategies and process management of ECLS technologies, investigating personalized therapy, and studying how to improve long-term rehabilitation and quality of life for survivors.
6.Research advance of Flash-RT in tumor treatment
Yuan WANG ; Lehui DU ; Pei ZHANG ; Qingchao SHANG ; Xingdong GUO ; Jiangyue LU ; Xiao LEI ; Baolin QU
China Medical Equipment 2024;21(1):9-14,20
The Flash radiotherapy(Flash-RT),which is the key breakthrough in the basic field of radiotherapy technique,which is expected to cause a new major transformation in the field of radiotherapy.In this paper,we reviewed the latest research advances of the application and the mechanism exploration of Flash-RT in tumor treatment.Current studies have found that both the Flash-RT with electron beams and photon and the Flash-RT with proton can reduce injury of normal tissue than radiotherapy with conventional dose-rate,but the relevant mechanisms are not yet clearly understood,which includes but not limited to oxygen depletion,DNA damage,cellular senescence,apoptosis and immune response.The difference of Flash-RT injury between tumor tissue and normal tissue further reduces the limitations of radiotherapy,and reduces the adverse reaction and complication compared with conventional radiotherapy,which has wide application prospects.
7.Conical beam CT measurement of alveolar bone structure remodeling in patients with skeletal class Ⅲ malocclusion after orthodontic-orthognathic treatment
Qihang ZHAO ; Xin LU ; Lei TONG ; Yonghui SHANG ; Shuai LI ; Wen LIU ; Jianhua ZHOU ; Rongtao YUAN ; Qingyuan GUO
Chinese Journal of Tissue Engineering Research 2024;28(23):3729-3735
BACKGROUND:Most of the studies on combined orthodontic-orthognathic treatment of skeletal class Ⅲ malocclusions have focused on the improvement of the patient's lateral appearance and recovery in the later stages of the treatment,while there are fewer studies observing the microcosmic nature of the alveolar bone remodeling of the lower anterior teeth. OBJECTIVE:To evaluate the therapeutic effect of lower anterior tooth decompensation and alveolar bone remodeling in patients with skeletal class Ⅲ malocclusion before and after orthodontic-orthognathic treatment based on oral X-ray lateral films and oral cone-beam CT. METHODS:From January 2015 to May 2023,15 patients with skeletal class Ⅲ malocclusion who underwent orthodontic-orthognathic surgery at Qingdao Hospital of Rehabilitation University were enrolled.All patients underwent lateral cephalography and cone beam computed tomography before and after treatment.Cephalometric measurement items related to the angle and line distance,lip/lingual bone cracking length(d-La/d-Li)and bone cracking/bone fenestration of the lower anterior teeth before and after treatment were measured. RESULTS AND CONCLUSION:Lateral X-ray films showed that the amount of alveolar bone remodeling after decompensation of the lower anterior teeth showed significant changes compared to before treatment.The root of the tooth moved significantly towards the center of the alveolar bone,and the specific data was closer to normal data,but there were still some differences compared with normal individuals.Based on the cone-beam CT measurement,the bone cracking/bone fenestration length and width of the alveolar bone were improved in almost all the teeth after orthodontic-orthognathic combined treatment,alveolar bone remodeling in some teeth even reached the level of healthy individuals.Before treatment,most patients often experienced bone fenestration/cracking on the lip/lingual side of the lower incisor due to compensatory tooth growth.However,during the preoperative orthodontic stage,decompensation triggered alveolar bone remodeling and significant changes in tooth angle.Preoperative orthodontic treatment caused the upper anterior teeth to retract and the lower anterior teeth to tilt and control the root,but the amount of decompensation before surgery was often insufficient.In the orthognathic surgery stage,the jaw was removed through the positioning guide plate,the maxilla moved forward,and the mandible retreated.During the postoperative orthodontic process,the effect of fine adjustment was better.Although there is a certain degree of recurrence trend in the position of teeth and jawbones,the postoperative orthodontic treatment is closer to the normal value.
8.Research progress of lipid metabolism in the pathogenesis of age-related macular degeneration
Yu SHANG ; Rong ZOU ; Yuanzhi YUAN
Chinese Journal of Clinical Medicine 2024;31(5):819-825
Age-related macular degeneration(AMD)is the first permanent cause of vision loss in developed countries,which is also a disease with high incidence and blindness rate in China.Studies have demonstrated that lipid metabolism is one of the key mechanisms of AMD.However,the precise mechanism remains unclear and medications for AMD treatments based on this mechanism have not yet been established.In this review,we critically review relevant studies to examine the associations between lipid metabolism and AMD from the perspectives of lipoproteins,lipid metabolism-related molecular,and lipid metabolism-related treatments,aiming to help understand the roles that lipid metabolism mechanisms play in the development and progression of AMD and to provide ideas for future targeted lipid metabolism therapies.
9.Somatostatin mediates Nrf2/HO-1 pathway to improve acute pancreatitis-associated acute lung injury
Hou-Ping ZHOU ; Yuan YUAN ; Bei-Bei LI ; Ting-Zheng OU ; Ming-Ming SHANG
The Chinese Journal of Clinical Pharmacology 2024;40(18):2729-2733
Objective To explore the mechanism of somatostatin in improving acute lung injury associated with acute pancreatitis.Methods Wistar rats were randomly divided into sham operation group(injection of normal saline),model group(puncture of common bile duct and injection of 5%sodium taurocholate with wire ligation),somatostatin group(injection of somatostatin into tail vein of model group),somatostatin+miR-146a-5p inhibitor group(on the basis of somatostatin group,tail vein injection of miR-146a-5p inhibitor and somatostatin+oe-angiogenin-like protein 4(ANGPTL4)group(on the basis of somatostatin group,tail vein injection of oe-ANGPTL4 plasmid).Hematoxylin-eosin(HE)staining was used to observe the pathological changes of pancreatic and lung tissues;pathological score and tissue wet-dry weight ratio were determined,real-time fluorescence quantitative polymerase chain reaction(qRT-PCR)was used to detect miR-146a-5p and ANGPTL4 mRNA expression and Western blot was used to detect the expression of related proteins in lung tissues of rats.Tumor necrosis factor-α(TNF-α)was detected by enzyme-linked immunosorbent assay(ELISA).Results In sham operation group,model group and somatostatin group,the damage degree of pancreas tissue(based on modified computed tomography severity index)were 1.25±0.28,3.20±0.34,2.15±0.31,respectively;the damage degree of lung tissue(based on the Smith lung injury score system)were 1.40±0.13,5.10±0.58,3.10±0.38,respectively.The relative expression levels of ANGPTL4 mRNA in sham operation group,model group,somatostatin group and somatostatin+miR-146a-5p inhibitor group were 1.00±0.17,1.63±0.20,1.21±0.18 and 1.73±0.28.The levels of TNF-α in sham operation group,model group,somatostatin group,somatostatin+miR-146a-5p inhibitor group and somatostatin+oe-ANGPTL4 group were(76.33±7.25),(125.05±13.56),(80.11±10.68),(118.62±14.32)and(105.32±13.52)pg·mL-1,respectively;the relative expression levels of nuclear factor E2-related factor 2(Nrf2)protein were 1.00±0.27,0.51±0.07,0.88±0.14,0.68±0.12,0.51±0.09,respectively;the relative expression levels of heme oxygenase-1(HO-1)protein were 1.00±0.25,0.58±0.11,0.79±0.18,0.48±0.07 and 0.50±0.08,respectively.The above indexes of the model group were compared with those of the sham operation group,and the above indexes of the somatostatin group were compared with those of the model group,somatostatin+miR-146a-5p inhibitor group and somatostatin+oe-ANGPTL4 group,and the differences were statistically significant(all P<0.05).Conclusion Somatostatin has antioxidant and anti-inflammatory effects and can ameliorate acute lung injury associated with acute pancreatitis.The mechanism may be related to Nrf2/HO-1 pathway mediated by miR-146a-5p/ANGPTL4.
10.Expert consensus on the evaluation and rehabilitation management of shoulder syndrome after neek dissection for oral and maxillofacial malignancies
Jiacun LI ; Moyi SUN ; Jiaojie REN ; Wei GUO ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Zhijun SUN ; Jian MENG ; Wei SHANG ; Shaoyan LIU ; Jie ZHANG ; Jicheng LI ; Yue HE ; Chunjie LI ; Kai YANG ; Zhongcheng GONG ; Qing XI ; Bing HAN ; Huaming MAI ; Yanping CHEN ; Jie ZHANG ; Yadong WU ; Chao LI ; Changming AN ; Chuanzheng SUN ; Hua YUAN ; Fan YANG ; Haiguang YUAN ; Dandong WU ; Shuai FAN ; Fei LI ; Chao XU ; Wei WEI
Journal of Practical Stomatology 2024;40(5):597-607
Neck dissection(ND)is one of the main treatment methods for oral and maxillofacial malignancies.Although ND type is in con-stant improvement,but intraoperative peal-pull-push injury of the accessory nerve,muscle,muscle membrane,fascia and ligament induced shoulder syndrome(SS)is still a common postoperative complication,combined with the influence of radiochemotherapy,not only can cause pain,stiffness,numbness,limited dysfunction of shoulder neck and arm,but also may have serious impact on patient's life quality and phys-ical and mental health.At present,there is still a lack of a systematic evaluation and rehabilitation management program for postoperative SS of oral and maxillofacial malignant tumors.Based on the previous clinical practice and the current available evidence,refer to the relevant lit-erature at home and abroad,the experts in the field of maxillofacial tumor surgery and rehabilitation were invited to discuss,modify and reach a consenusus on the etiology,assessment diagnosis,differential diagnosis,rehabilitation strategy and prevention of SS,in order to provide clinical reference.

Result Analysis
Print
Save
E-mail