1.Visualization analysis on implementation science in translation of clinical practice guidelines based on knowledge graph
Tingting PENG ; Xun DENG ; Ying WU ; Shan ZHANG
Chinese Journal of Practical Nursing 2024;40(3):203-210
Objective:To investigate the hot topics and trends of implementation science in the transformation of clinical practice guidelines, in order to provide ideas and references for clinical managers to reasonably apply and implement scientific promotion guidelines.Methods:CiteSpace6.2.R3 software was used to visualize the literature, which retrieved from the core database of Web of Science, including the number of articles, countries and high-frequency keywords and keyword clustering and emergence for visual analysis, etc.Results:A total of 4 593 articles were included in the final analysis. Since 1993, the number of published papers had increased year by year. The hot topics focused on primary care, attitudes, knowledge translation, clinical trials, risk factors and machine learning. The research trends included older adults and artificial intelligence.Conclusions:The rapid development of implementation science in guideline translation research suggests that scholars from various countries, especially hospital administrators should reasonably apply implementation science framework to integrate evidence into clinical practice, and promote the implementation of clinical practice guidelines.
2.Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis
Bao YINI ; Shan QIYUAN ; Lu KEDA ; Yang QIAO ; Liang YING ; Kuang HAODAN ; Wang LU ; Hao MIN ; Peng MENGYUN ; Zhang SHUOSHENG ; Cao GANG
Journal of Pharmaceutical Analysis 2024;14(8):1099-1109
Renal fibrosis is a devastating consequence of progressive chronic kidney disease,representing a major public health challenge worldwide.The underlying mechanisms in the pathogenesis of renal fibrosis remain unclear,and effective treatments are still lacking.Renal tubular epithelial cells(RTECs)maintain kidney function,and their dysfunction has emerged as a critical contributor to renal fibrosis.Cellular quality control comprises several components,including telomere homeostasis,ubiquitin-proteasome system(UPS),autophagy,mitochondrial homeostasis(mitophagy and mitochondrial metabolism),endoplasmic reticulum(ER,unfolded protein response),and lysosomes.Failures in the cellular quality control of RTECs,including DNA,protein,and organelle damage,exert profibrotic functions by leading to senescence,defective autophagy,ER stress,mitochondrial and lysosomal dysfunction,apoptosis,fibro-blast activation,and immune cell recruitment.In this review,we summarize recent advances in un-derstanding the role of quality control components and intercellular crosstalk networks in RTECs,within the context of renal fibrosis.
3.Study on the Mechanism of Quercetin Intervention in Breast Cancer with Depressive Characteristics Based on Network Pharmacology and Animal Experiments
Ying-Chao WU ; Yu-Qi LIANG ; Yu-Yu HU ; Liu-Shan CHEN ; Peng WU ; Qian ZUO ; Qian-Jun CHEN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2795-2803
Objective To explore the mechanism of quercetin in the treatment of breast cancer with depressive features using network pharmacology and animal experiments.Methods Network pharmacology and bioinformatics methods were used to predict the key targets and mechanisms of quercetin in the treatment of breast cancer with depressive characteristics.The predicted results were verified by animal experiments.A mouse model of breast cancer with depressive characteristics was constructed,and quercetin intervention was performed after grouping.The depression of mice was evaluated by open field test.The tumor volume and tumor mass were measured.The expression of Ki-67 in tumor tissue was detected by immunohistochemical staining.The expressions of tumor necrosis factor α(TNF-α),interleukin 6(IL-6),p53,Caspase-3 and B-cell lymphoma/leukemia 2(Bcl-2)in tumor tissue were detected by Western Blot.Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)method was used to detect the apoptosis of tumor cells.Results In the breast cancer model group with depressive characteristics,the total movement distance in the open field test and the ratio of residence time in the central area of the open field test were decreased,the tumor volume and tumor mass were significantly increased,and Ki-67 expression level in the tumor tissue was significantly increased,the expression levels of TNF-α,IL-6,p53 and Caspase-3 in the tumor tissue were decreased and the expression level of Bcl-2 was increased,as well as the rate of TUNEL positive cells was decreased,the differences being statistically significant compared with the control group(P<0.01 or P<0.001).Compared with the model group,the above indexes were significantly reversed in the quercetin group(P<0.01 or P<0.001).Conclusion Quercetin can effectively inhibit the progression of breast cancer with depressive characteristics in mice,and its mechanism is related to the regulation of TNF,IL6,TP53,CASP3,BCL2 and other targets to promote tumor cell apoptosis.
4.Fetal STR typing and paternity identification of early pregnancy aborted tissue based on next-generation sequencing technology
Jin ZHANG ; Kaihui LIU ; Jinping HAO ; Xueying YANG ; Xingkun ZHANG ; Wei PENG ; Xiaoyu XU ; Shan GAO ; Jingjing CHANG ; Bo LEI ; Mengnan ZHANG ; Qiujuan WANG ; Ying ZHANG
Chinese Journal of Forensic Medicine 2024;39(5):539-545
Fetal STR typing of aborted tissue has long been a major problem in forensic DNA.Especially for the first trimester abortion tissue,it is difficult to isolate the embryonic components by histomorphological means,resulting in the inability to accurately obtain the STR typing of the fetus.The mixed STR typing results of mother and fetus can provide a key basis for the identification of suspects in cases of rape-induced pregnancy.In this study,next generation sequencing was used to successfully detect mixed STR typing of mother and suspected fetus or single STR typing of suspected fetus in 4 rape-induced early pregnancy abortion tissues.Combined with Y-STR and flank sequence information,it provides a more comprehensive and reliable genetic basis for the identification of suspects.
5.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
6.Mechanism of Xiyanping injection in treatment of acute lung injury using network pharmacology and molecular docking analysis
Shao-Yan NIE ; Su-Su FAN ; Yu-Shan ZHU ; Xue-Rong PENG ; Ying-Xia WANG ; Xuan ZHANG
Chinese Pharmacological Bulletin 2024;40(6):1165-1171
Aim To explore the protective effects of Xiyanping injection against lipopolysaccharide(LPS)-induced acute lung injury(ALI)in mice,and investi-gate the underlying mechanism.Methods In the LPS-induced ALI mouse model,the protective effect of Xiyanping injection against ALI was evaluated by ob-serving the pathological indicators of lung tissue.Net-work pharmacology and molecular docking were used to explore its mechanism.Western blot method was used to validate the predicted target proteins.Results Xiy-anping injection significantly improved the pathological injury and alleviated inflammatory reactions in lungs of ALI mice.Four active ingredients were identified in Xiyanping injection,namely,14-deoxy-11-oxo-an-drographolide,14-deoxyandrographolide,14-deoxy-12-methoxyandrographolide,and andrographolide-19-β-D-glucoside.A total of 288 corresponding drug targets and 4 960 ALI-related targets were obtained,with 192 genes overlapping.The ten core targets associated with Xiyanping injection were identified as STAT3,EGFR,PIK3R1,MAPK1,PIK3CA,NFKB1,ESR1,MAPK8,JAK2,and FYN.GO enrichment analysis re-vealed 310 biological processes(BP),65 cellular components(CC),and 80 molecular functions(MF)associated with the overlapping genes.KEGG pathway enrichment analysis identified 141 pathways related to ALI,with the top 20 pathways including MAPK,TNF-α,VEGF,cAMP,mTOR,AMPK,NOD,JAK-STAT,IL-17,and NF-κB.Molecular docking results demonstrated strong binding affinity between core tar-gets(MAPK1,MAPK8,NFKB1)and active ingredi-ents(14-deoxy-12-methoxyandrographolide and 14-de-oxyandrographolide).Western blotting showed that medium and high doses of Xiyanping injection signifi-cantly downregulated p38,JNK,ERKl/2,NF-κB p65 protein expression in lung tissue of ALI mice(P<0.01).Conclusions Xiyanping injection has a cer-tain protective effect against ALI,and the mechanism is related to regulating MAPK and NF-κB signaling pathways.
7.Standardized operational protocol for the China Human Brain Bank Consortium(2nd edition)
Xue WANG ; Zhen CHEN ; Juan-Li WU ; Nai-Li WANG ; Di ZHANG ; Juan DU ; Liang YU ; Wan-Ru DUAN ; Peng-Hao LIU ; Han-Lin ZHANG ; Can HUANG ; Yue-Shan PIAO ; Ke-Qing ZHU ; Ai-Min BAO ; Jing ZHANG ; Yi SHEN ; Chao MA ; Wen-Ying QIU ; Xiao-Jing QIAN
Acta Anatomica Sinica 2024;55(6):734-745
Human brain banks use a standardized protocol to collect,process and store post-mortem human brains and related tissues,along with relevant clinical information,and to provide the tissue samples and data as a resource to foster neuroscience research according to a standardized operating protocols(SOP).Human brain bank serves as the foundation for neuroscience research and the diagnosis of neurological disorders,highlighting the crucial rule of ensuring the consistency of standardized quality for brain tissue samples.The first version of SOP in 2017 was published by the China Human Brain Bank Consortium.As members increases from different regions in China,a revised SOP was drafted by experts from the China Human Brain Bank Consortium to meet the growing demands for neuroscience research.The revised SOP places a strong emphasis on ethical standards,incorporates neuropathological evaluation of brain regions,and provides clarity on spinal cord sampling and pathological assessment.Notable enhancements in this updated version of the SOP include reinforced ethical guidelines,inclusion of matching controls in recruitment,and expansion of brain regions to be sampled for neuropathological evaluation.
8.Research progress on chemical constituents and pharmacological effects of Kaixin Powder and predictive analysis of its Q-markers.
Xuan YANG ; Jun-Ying LI ; Xiao-Xiao SHAN ; Peng HUANG ; Can PENG ; Cai-Yun ZHANG
China Journal of Chinese Materia Medica 2023;48(8):2077-2085
Kaixin Powder is a classic prescription for invigorating Qi, nourishing the mind, and calming the mind. It has pharmacological effects of improving learning and memory ability, resisting oxidation, delaying aging, and promoting the differentiation and regeneration of nerve cells. It is mainly used in the modern clinical treatment of amnesia, depression, dementia, and other diseases. The present paper reviewed the research progress on the chemical composition and pharmacological action of Kaixin Powder, predicted and analyzed its quality markers(Q-markers) according to the concept of Chinese medicine Q-markers, including transmission and traceability, specificity, effectiveness, measurability, and compound compatibility environment. The results suggested that sibiricose A5, sibiricose A6, polygalaxanthone Ⅲ, 3',6-disinapoylsucrose, tenuifoliside A, ginsenoside Rg_1, ginsenoside Re, ginsenoside Rb_1, pachymic acid, β-asarone, and α-asarone could be used as Q-markers of Kaixin Powder. This study is expected to provide a scientific basis for establishing the quality control system and the whole process quality traceability system of Kaixin Powder compound preparations.
Ginsenosides
;
Powders
;
Drugs, Chinese Herbal/chemistry*
;
Medicine, Chinese Traditional
9.Construction of iPSC-derived Inhibitory Neural Network Tissue with Synaptic Transmission Potentials
Li-zhi PENG ; Qing-shuai WEI ; Yuan-huan MA ; Jin-hai XU ; Bin JIANG ; Yuan-shan ZENG ; Xiang ZENG ; Ying DING
Journal of Sun Yat-sen University(Medical Sciences) 2023;44(1):18-25
ObjectiveDirected differentiation of human induced pluripotent stem cells (hiPSCs) into spinal cord γ-aminobutyric acid (GABA)-ergic progenitor cells were implanted into an decellularized optical nerve (DON) bioscaffold to construct a hiPSC-derived inhibitory neural network tissue with synaptic activities. This study aimed to provide a novel stem cell-based tissue engineering product for the study and the repair of central nervous system injury. MethodsThe combination of stepwise directional induction and tissue engineering technology was applied in this study. After hiPSCs were directionally induced into human neural progenitor cells (hNPCs) in vitro, they were seeded into a DON for three-dimensional culture, allowing further differentiation into inhibitory GABAergic neurons under the specific neuronal induction environment. Transmission electron microscopy and whole cell patch clamp technique were used to detect whether the hiPSCs differentiated neurons could form synapse-like structures and whether these neurons had spontaneous inhibitory postsynaptic currents, respectively, in order to validate that the hiPSC-derived neurons would form neural networks with synaptic transmission potentials from a structural and functional perspective. ResultsThe inhibitory neurons of GABAergic phenotype were successfully induced from hiPSCs in vitro, and maintained good viability after 28 days of culture. With the transmission electron microscopy, it was observed that many cell junctions were formed between hiPSC-derived neural cells in the three-dimensional materials, some of which presented a synapse- like structure, manifested as the slight thickness of cell membrane and a small number of vesicles within one side of the cell junctions, the typical structure of a presynatic component, and focal thickness of the membrane of the other side of the cell junctions, a typical structure of a postsynaptic component. According to whole-cell patch-clamp recording, the hiPSC-derived neurons had the capability to generate action potentials and spontaneous inhibitory postsynaptic currents were recorded in this biotissue. ConclusionsThe results of this study indicated that hiPSCs can be induced to differentiate into GABAergic progenitor cells in vitro and can successfully construct iPSC-derived inhibitory neural network tissue with synaptic transmission after implanted into a DON for three-dimensional culture. This study would provide a novel neural network tissue for future research and treatment of central nervous system injury by stem cell tissue engineering technology.
10.Epidemiological characteristics of a 2019-nCoV outbreak caused by Omicron variant BF.7 in Shenzhen.
Yan Peng CHENG ; Dong Feng KONG ; Jia ZHANG ; Zi Quan LYU ; Zhi Gao CHEN ; Hua Wei XIONG ; Yan LU ; Qing Shan LUO ; Qiu Ying LYU ; Jin ZHAO ; Ying WEN ; Jia WAN ; Fang Fang LU ; Jian Hua LU ; Xuan ZOU ; Zhen ZHANG
Chinese Journal of Epidemiology 2023;44(3):379-385
Objective: To explore the epidemiological characteristic of a COVID-19 outbreak caused by 2019-nCoV Omicron variant BF.7 and other provinces imported in Shenzhen and analyze transmission chains and characteristics. Methods: Field epidemiological survey was conducted to identify the transmission chain, analyze the generation relationship among the cases. The 2019-nCoV nucleic acid positive samples were used for gene sequencing. Results: From 8 to 23 October, 2022, a total of 196 cases of COVID-19 were reported in Shenzhen, all the cases had epidemiological links. In the cases, 100 were men and 96 were women, with a median of age, M (Q1, Q3) was 33(25, 46) years. The outbreak was caused by traverlers initial cases infected with 2019-nCoV who returned to Shenzhen after traveling outside of Guangdong Province.There were four transmission chains, including the transmission in place of residence and neighbourhood, affecting 8 persons, transmission in social activity in the evening on 7 October, affecting 65 persons, transmission in work place on 8 October, affecting 48 persons, and transmission in a building near the work place, affecting 74 persons. The median of the incubation period of the infection, M (Q1, Q3) was 1.44 (1.11, 2.17) days. The incubation period of indoor exposure less than that of the outdoor exposure, M (Q1, Q3) was 1.38 (1.06, 1.84) and 1.95 (1.22, 2.99) days, respcetively (Wald χ2=10.27, P=0.001). With the increase of case generation, the number and probability of gene mutation increased. In the same transmission chain, the proportion of having 1-3 mutation sites was high in the cases in the first generation. Conclusions: The transmission chains were clear in this epidemic. The incubation period of Omicron variant BF.7 infection was shorter, the transmission speed was faster, and the gene mutation rate was higher. It is necessary to conduct prompt response and strict disease control when epidemic occurs.
Male
;
Humans
;
Female
;
SARS-CoV-2
;
COVID-19/epidemiology*
;
Disease Outbreaks
;
Epidemics
;
China/epidemiology*

Result Analysis
Print
Save
E-mail