1.Cost-utility analysis of dorzagliatin combined with metformin in the treatment of type 2 diabetes mellitus patients with poor glycemic control with metformin
Ning GAO ; Bing FENG ; Shengnan GAO ; Shan GUO ; Mengna NIU ; Guoqiang LIU
China Pharmacy 2024;35(6):724-728
OBJECTIVE To assess the long-term cost-effectiveness of five glucagon-like peptide-1 receptor agonists (GLP- 1RAs) in the treatment of poorly controlled type 2 diabetes mellitus (T2DM) treated with metformin. METHODS Baseline data from patients in previously published meta-analysis and included randomized controlled trials (RCTs) were extracted to predict survival, long-term efficacy, and costs for each group using the United Kingdom prospective diabetes study outcome model 2.1. The cost-effectiveness of 5 GLP-1RAs (liraglutide, lixisenatide, exenatide, dulaglutide, and semaglutide) was analyzed by cost- utility analysis. Sensitivity analysis and scenario analysis were also performed to verify the uncertainty of basic analysis results. RESULTS A total of 21 RCTs with 6 796 patients were included. Survival analysis curves showed the superiority of semaglutide in reducing the risk of death from cardiovascular disease and dulaglutide in reducing the risk of all-cause mortality over other GLP- 1RAs. The cost-utility analysis showed that the five drugs were economically superior to inferior in the order of lixisenatide, semaglutide, exenatide, dulaglutide, and liraglutide; one-way and probabilistic sensitivity analyses indicated that the results were robust. The scenario analysis results indicated that the price of semaglutide should decrease by at least 54.64% to 369.21 yuan, which is cost-effectiveness compared to lixisenatide. CONCLUSIONS For T2DM patients in China with poor glycemic control after treatment with metformin, lixisenatide and semaglutide may be considered as the preferred regimen.
2.Cost-effectiveness analysis of tislelizumab combined with chemotherapy as first-line treatment for locally advanced unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma
Bing FENG ; Ning GAO ; Shengnan GAO ; Shan GUO ; Mengna NIU ; Guoqiang LIU
China Pharmacy 2024;35(8):967-971
OBJECTIVE To evaluate the cost-effectiveness of tislelizumab combined with chemotherapy as first-line treatment for locally advanced unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma. METHODS The data of RATIONALE-305 study and related literature were used to establish a partitioned survival model from the perspective of China’s health system. The cycle was 3 weeks, the simulation time was set as 10 years, and the discount rate was 5%. The quality-adjusted life years (QALYs) were used as the health outcome indicator to evaluate the cost-effectiveness of tislelizumab combined with chemotherapy versus placebo combined with chemotherapy as first-line treatment for locally advanced unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma, and one-way sensitivity analysis and probabilistic sensitivity analysis were also conducted. RESULTS The base analysis showed that the patients received more 0.268 QALYs with tislelizumab plus chemotherapy, compared with placebo plus chemotherapy, but the cost increased by 70 404.81 yuan with an incremental cost- effectiveness ratio (ICER) of 262 431.62 yuan/QALY, which was less than three times China’s gross domestic product (GDP) per capita in 2023 as the willingness-to-pay (WTP) threshold (268 074 yuan/QALY). One-way sensitivity analysis showed that the efficacy value of progress free survive and the price of tislelizumab had a greater impact on the ICER value. The results of probability sensitivity analysis showed that when the WTP threshold was 3 times China’s GDP per capita in 2023, the probability of tislelizumab being cost-effective was 53.3%. CONCLUSIONS When the WTP threshold is 3 times China’s GDP per capita in 2023, tislelizumab plus chemotherapy is cost-effective for first-line treatment of locally advanced unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma, compared with placebo plus chemotherapy.
3.Pathological characteristics of false-positive lesions of prostate cancer on 68Ga-PSMA-11 PET/CT
Renjie LI ; Yao FU ; Shan PENG ; Fengjiao YANG ; Feng WANG ; Hongqian GUO ; Xuefeng QIU
Journal of Modern Urology 2024;29(11):988-992
[Objective] To investigate the pathological characteristics of false-positive lesions of prostate cancer on 68Ga-PSMA-11 PET/CT based on the pathology of whole mount specimens, in order to more accurately assess the degree of malignancy within the prostate tissue and avoid overdiagnosis and unnecessary treatment. [Methods] A total of 77 patients who underwent 68Ga-PSMA-11 PET/CT before radical prostatectomy in Nanjing Drum Tower Hospital during Jan.2018 and Dec.2022 were retrospectively analyzed.The pathology of whole mount specimens was detected.Two nuclear physicians examined all imaging plates without knowing the pathological results.Two pathological physicians completed all pathological diagnosis without knowing the imaging results.The pathological characteristics of false-positive lesions were determined by matching 68Ga-PSMA-11 PET/CT and pathological specimens.To analyze the pathological features of false-positive lesions, true-negative lesions were randomly delineated and defined.The pathological features of false-positive and true-negative lesions were analyzed and compared using Fisher exact test. [Results] After the imaging and pathological sections were matched, 21(16.3%) false-positive lesions were identified.The pathological characteristics of the 21 false-positive lesions were as follows: 16 (76.2%) simple atrophy with cyst formation, 3(14.3%) prostatic nodular hyperplasia, and 2(9.5%) inflammation.The pathological characteristics of 21 true-negative lesions were: 13(61.9%) normal glands, 5(23.8%) prostatic nodular hyperplasia and 3(14.3%) simple atrophy with cyst formation.Fisher exact test showed that the proportion of simple atrophy with cyst formation in the pathological features of false-positive lesions and true-negative lesions was statistically significant (76.2% vs.14.3%, P<0.001). [Conclusion] Simple atrophy with cyst formation may be a characteristic pathological type of the false-positive lesions of prostate cancer on 68Ga-PSMA-11 PET/CT.
4.Research on Electrochemical Chemical Oxygen Demand Sensor
Shan YUN ; Lei WANG ; Li-Guo WAN ; Zhen-Yu PENG ; Hong-Chang WANG ; Jun-Feng ZHAI ; Shao-Jun DONG
Chinese Journal of Analytical Chemistry 2024;52(9):1298-1306
An electrochemical chemical oxygen demand(COD)sensor was proposed based on a FTO/TiO2/PbO2 electrode and a thin-layer electrochemical cell.The FTO/TiO2/PbO2 electrode was characterized by X-ray photoelectronic spectroscopy(XPS),X-ray diffraction(XRD)spectroscopy and electrochemical technique,and the results indicated that the rapid decrease in the output signals of the electrochemical COD sensor could be attributed to oxidation of PbSO4 occurring on the surface of FTO/TiO2/PbO2 electrode.The PbO2 deposition time and concentration of Na2SO4 were further optimized and then the electrochemical COD sensor was challenged by real samples including laker water sample,river water sample and wastewater sample.The evolution trend of signals of the electrochemical COD sensor in response to lake and river water samples was identical with that obtained with the standard method(HJ/T399-2007,Water quality-determination of the chemical oxygen demand-fast digestion-spectrophotometric method).The electrochemical COD sensor exhibited significant increase in the signal intensity after the samples were switched from lake water to wastewater sample,and a mean value of 32.5 mg/L with relative standard deviation(RSD)of 6.8%were obtained after measuring 45 times the wastewater with COD value of 30 mg/L under a sampling interval of 400 s.The as-prepared electrochemical COD sensor possessed good promise in regular monitoring of COD,discharge of wastewater and industrial process control,with advantages such as a small sampling interval,mild reaction conditions and no requirement of toxic and harmful chemical reagents.
5.ANGPTL8 knockout reduces lipopolysaccharide-induced hepatic lipid deposition
Shan LUO ; Ying FENG ; Dandan FAN ; Wenxin ZHENG ; Xingrong GUO ; Xuzhi RUAN
The Journal of Practical Medicine 2024;40(9):1197-1203
Objective To study the influence of ANGPTL8 in lipopolysaccharide(LPS)-induced hepatic lipid deposition.Methods Male wild-type(WT)and ANGPTL8 knockout mice at 6-8 weeks were used to induce sepsis models by intrabitoneal injection of LPS(10 mg/kg).qPCR and immunofluorescence were used to detected the mRNA and protein expression of ANGPTL8 in liver tissue and HepG2 cells respectively;The contents of alanine aminotransferase(ALT),aspartate aminotransferase(AST)in serum and the triglyceride(TG)and malondialdehyde(MDA)in liver homogenate were detected by kits;the histopathological changes of liver tissue were analyzed through HE staining.Lipids accumulation in liver were detected by oil red O staining.The apoptosis of liver was determinated by TUNEL staining.RNA-seq was used to analyzing the differentially expressed genes in the liver tissue of WT and ANGPTL8 KO mice,and the qPCR and Western Blot were used to verify the differential expressed genes.Results The expression of ANGPTL8 in the liver was significantly upregulated at 48 hours after LPS stimulation.Compared with WT mice,the hepatic lipid deposition,steatosis,and apoptosis were significantly alleviated in liver of ANGPTL8 KO mice,the ALT and AST levels in serum and the TG and MDA content in liver homogenate of ANGPTL8 KO mice were also reduced significantly.The expression of caveolin-1(CAV1)in liver of ANGPTL8 KO mice was significantly higher than that of WT mice.Conclusions LPS promoted the expression and secretion of ANGPTL8 in liver tissue,and ANGPTL8 increased hepatic lipid deposition and peroxidation by inhibiting the expression of CAV1.
6.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail