1.Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK
Seung-On LEE ; Sang Hoon JOO ; Seung-Sik CHO ; Goo YOON ; Yung Hyun CHOI ; Jin Woo PARK ; Kwon-Yeon WEON ; Jung-Hyun SHIM
Biomolecules & Therapeutics 2025;33(2):344-354
Anticancer activities of Licochalcone D (LCD) in human colorectal cancer (CRC) cells HCT116 and oxaliplatin-resistant HCT116 (HCT116-OxR) were determined. Cell viability assay and soft agar assay were used to analyze antiproliferative activity of LCD.Flow cytometry was performed to determine effects of LCD on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. Western blot analysis was used to monitor levels of proteins involved in cell cycle and apoptosis signaling pathways. LCD suppressed the growth and anchorageindependent colony formation of both HCT116 and HCT116-OxR cells. Cell cycle analysis by flow cytometry indicated that LCD induced cell cycle arrest and increased cells in sub-G1 phase. In parallel with the antiproliferative effect of LCD, LCD up-regulated levels of p21 and p27 while downregulating cyclin B1 and cdc2. In addition, phosphorylation levels of JNK and p38 mitogen-activated protein kinase (MAPK) were increased by LCD. Inhibition of these kinases somehow prevented the antiproliferative effect of LCD. Moreover, LCD increased ROS and deregulated mitochondrial membrane potential, leading to the activation of multiple caspases. An ROS scavenger N-acetyl-cysteine (NAC) or pan-caspase inhibitor Z-VAD-FMK prevented the antiproliferative effect of LCD, supporting that ROS generation and caspase activation mediated LCD-induced apoptosis in CRC cells. In conclusion, LCD exerted antitumor activity in CRC cells by inducing ROS generation and phosphorylation of JNK and p38 MAPK. These results support that LCD could be further developed as a chemotherapeutic agent for treating CRC.
2.Discordance in Claudin 18.2Expression Between Primary and Metastatic Lesions in Patients With Gastric Cancer
Seung-Myoung SON ; Chang Gok WOO ; Ok-Jun LEE ; Sun Kyung LEE ; Minkwan CHO ; Yong-Pyo LEE ; Hongsik KIM ; Hee Kyung KIM ; Yaewon YANG ; Jihyun KWON ; Ki Hyeong LEE ; Dae Hoon KIM ; Hyo Yung YUN ; Hye Sook HAN
Journal of Gastric Cancer 2025;25(2):303-317
Purpose:
Claudin 18.2 (CLDN18.2) has emerged as a promising therapeutic target for CLDN18.2-expressing gastric cancer (GC). We sought to examine the heterogeneity of CLDN18.2 expression between primary GC (PGC) and metastatic GC (MGC) using various scoring methods.
Materials and Methods:
We retrospectively analyzed data from 102 patients with pathologically confirmed paired primary and metastatic gastric or gastroesophageal junction adenocarcinomas. CLDN18.2 expression was evaluated through immunohistochemistry on formalin-fixed paraffin-embedded tissue samples. We assessed CLDN18.2 positivity using multiple scoring approaches, including the immunoreactivity score, H-score, and the percentage of tumor cells showing moderate-to-strong staining intensity. We analyzed the concordance rates between PGC and MGC and the association of CLDN18.2 positivity with clinicopathological features.
Results:
CLDN18.2 positivity varied from 25% to 65% depending on the scoring method, with PGC consistently showing higher expression levels than MGC. Intratumoral heterogeneity was noted in 25.5% of PGCs and 19.6% of MGCs. Intertumoral heterogeneity, manifesting as discordance in CLDN18.2 positivity between PGC and MGC, was observed in about 20% of cases, with moderate agreement across scoring methods (κ=0.47 to 0.60).In PGC, higher CLDN18.2 positivity correlated with synchronous metastasis, presence of peritoneal metastasis, poorly differentiated grade, and biopsy specimens. In MGC, positivity was associated with synchronous metastasis, presence of peritoneal metastasis, and metastatic peritoneal tissues.
Conclusions
CLDN18.2 expression demonstrates significant heterogeneity between PGC and MGC, with a 20% discordance rate. Comprehensive tissue sampling and reassessment of CLDN18.2 status are crucial, especially before initiating CLDN18.2-targeted therapies.
3.Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK
Seung-On LEE ; Sang Hoon JOO ; Seung-Sik CHO ; Goo YOON ; Yung Hyun CHOI ; Jin Woo PARK ; Kwon-Yeon WEON ; Jung-Hyun SHIM
Biomolecules & Therapeutics 2025;33(2):344-354
Anticancer activities of Licochalcone D (LCD) in human colorectal cancer (CRC) cells HCT116 and oxaliplatin-resistant HCT116 (HCT116-OxR) were determined. Cell viability assay and soft agar assay were used to analyze antiproliferative activity of LCD.Flow cytometry was performed to determine effects of LCD on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. Western blot analysis was used to monitor levels of proteins involved in cell cycle and apoptosis signaling pathways. LCD suppressed the growth and anchorageindependent colony formation of both HCT116 and HCT116-OxR cells. Cell cycle analysis by flow cytometry indicated that LCD induced cell cycle arrest and increased cells in sub-G1 phase. In parallel with the antiproliferative effect of LCD, LCD up-regulated levels of p21 and p27 while downregulating cyclin B1 and cdc2. In addition, phosphorylation levels of JNK and p38 mitogen-activated protein kinase (MAPK) were increased by LCD. Inhibition of these kinases somehow prevented the antiproliferative effect of LCD. Moreover, LCD increased ROS and deregulated mitochondrial membrane potential, leading to the activation of multiple caspases. An ROS scavenger N-acetyl-cysteine (NAC) or pan-caspase inhibitor Z-VAD-FMK prevented the antiproliferative effect of LCD, supporting that ROS generation and caspase activation mediated LCD-induced apoptosis in CRC cells. In conclusion, LCD exerted antitumor activity in CRC cells by inducing ROS generation and phosphorylation of JNK and p38 MAPK. These results support that LCD could be further developed as a chemotherapeutic agent for treating CRC.
4.Discordance in Claudin 18.2Expression Between Primary and Metastatic Lesions in Patients With Gastric Cancer
Seung-Myoung SON ; Chang Gok WOO ; Ok-Jun LEE ; Sun Kyung LEE ; Minkwan CHO ; Yong-Pyo LEE ; Hongsik KIM ; Hee Kyung KIM ; Yaewon YANG ; Jihyun KWON ; Ki Hyeong LEE ; Dae Hoon KIM ; Hyo Yung YUN ; Hye Sook HAN
Journal of Gastric Cancer 2025;25(2):303-317
Purpose:
Claudin 18.2 (CLDN18.2) has emerged as a promising therapeutic target for CLDN18.2-expressing gastric cancer (GC). We sought to examine the heterogeneity of CLDN18.2 expression between primary GC (PGC) and metastatic GC (MGC) using various scoring methods.
Materials and Methods:
We retrospectively analyzed data from 102 patients with pathologically confirmed paired primary and metastatic gastric or gastroesophageal junction adenocarcinomas. CLDN18.2 expression was evaluated through immunohistochemistry on formalin-fixed paraffin-embedded tissue samples. We assessed CLDN18.2 positivity using multiple scoring approaches, including the immunoreactivity score, H-score, and the percentage of tumor cells showing moderate-to-strong staining intensity. We analyzed the concordance rates between PGC and MGC and the association of CLDN18.2 positivity with clinicopathological features.
Results:
CLDN18.2 positivity varied from 25% to 65% depending on the scoring method, with PGC consistently showing higher expression levels than MGC. Intratumoral heterogeneity was noted in 25.5% of PGCs and 19.6% of MGCs. Intertumoral heterogeneity, manifesting as discordance in CLDN18.2 positivity between PGC and MGC, was observed in about 20% of cases, with moderate agreement across scoring methods (κ=0.47 to 0.60).In PGC, higher CLDN18.2 positivity correlated with synchronous metastasis, presence of peritoneal metastasis, poorly differentiated grade, and biopsy specimens. In MGC, positivity was associated with synchronous metastasis, presence of peritoneal metastasis, and metastatic peritoneal tissues.
Conclusions
CLDN18.2 expression demonstrates significant heterogeneity between PGC and MGC, with a 20% discordance rate. Comprehensive tissue sampling and reassessment of CLDN18.2 status are crucial, especially before initiating CLDN18.2-targeted therapies.
5.Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK
Seung-On LEE ; Sang Hoon JOO ; Seung-Sik CHO ; Goo YOON ; Yung Hyun CHOI ; Jin Woo PARK ; Kwon-Yeon WEON ; Jung-Hyun SHIM
Biomolecules & Therapeutics 2025;33(2):344-354
Anticancer activities of Licochalcone D (LCD) in human colorectal cancer (CRC) cells HCT116 and oxaliplatin-resistant HCT116 (HCT116-OxR) were determined. Cell viability assay and soft agar assay were used to analyze antiproliferative activity of LCD.Flow cytometry was performed to determine effects of LCD on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. Western blot analysis was used to monitor levels of proteins involved in cell cycle and apoptosis signaling pathways. LCD suppressed the growth and anchorageindependent colony formation of both HCT116 and HCT116-OxR cells. Cell cycle analysis by flow cytometry indicated that LCD induced cell cycle arrest and increased cells in sub-G1 phase. In parallel with the antiproliferative effect of LCD, LCD up-regulated levels of p21 and p27 while downregulating cyclin B1 and cdc2. In addition, phosphorylation levels of JNK and p38 mitogen-activated protein kinase (MAPK) were increased by LCD. Inhibition of these kinases somehow prevented the antiproliferative effect of LCD. Moreover, LCD increased ROS and deregulated mitochondrial membrane potential, leading to the activation of multiple caspases. An ROS scavenger N-acetyl-cysteine (NAC) or pan-caspase inhibitor Z-VAD-FMK prevented the antiproliferative effect of LCD, supporting that ROS generation and caspase activation mediated LCD-induced apoptosis in CRC cells. In conclusion, LCD exerted antitumor activity in CRC cells by inducing ROS generation and phosphorylation of JNK and p38 MAPK. These results support that LCD could be further developed as a chemotherapeutic agent for treating CRC.
6.Discordance in Claudin 18.2Expression Between Primary and Metastatic Lesions in Patients With Gastric Cancer
Seung-Myoung SON ; Chang Gok WOO ; Ok-Jun LEE ; Sun Kyung LEE ; Minkwan CHO ; Yong-Pyo LEE ; Hongsik KIM ; Hee Kyung KIM ; Yaewon YANG ; Jihyun KWON ; Ki Hyeong LEE ; Dae Hoon KIM ; Hyo Yung YUN ; Hye Sook HAN
Journal of Gastric Cancer 2025;25(2):303-317
Purpose:
Claudin 18.2 (CLDN18.2) has emerged as a promising therapeutic target for CLDN18.2-expressing gastric cancer (GC). We sought to examine the heterogeneity of CLDN18.2 expression between primary GC (PGC) and metastatic GC (MGC) using various scoring methods.
Materials and Methods:
We retrospectively analyzed data from 102 patients with pathologically confirmed paired primary and metastatic gastric or gastroesophageal junction adenocarcinomas. CLDN18.2 expression was evaluated through immunohistochemistry on formalin-fixed paraffin-embedded tissue samples. We assessed CLDN18.2 positivity using multiple scoring approaches, including the immunoreactivity score, H-score, and the percentage of tumor cells showing moderate-to-strong staining intensity. We analyzed the concordance rates between PGC and MGC and the association of CLDN18.2 positivity with clinicopathological features.
Results:
CLDN18.2 positivity varied from 25% to 65% depending on the scoring method, with PGC consistently showing higher expression levels than MGC. Intratumoral heterogeneity was noted in 25.5% of PGCs and 19.6% of MGCs. Intertumoral heterogeneity, manifesting as discordance in CLDN18.2 positivity between PGC and MGC, was observed in about 20% of cases, with moderate agreement across scoring methods (κ=0.47 to 0.60).In PGC, higher CLDN18.2 positivity correlated with synchronous metastasis, presence of peritoneal metastasis, poorly differentiated grade, and biopsy specimens. In MGC, positivity was associated with synchronous metastasis, presence of peritoneal metastasis, and metastatic peritoneal tissues.
Conclusions
CLDN18.2 expression demonstrates significant heterogeneity between PGC and MGC, with a 20% discordance rate. Comprehensive tissue sampling and reassessment of CLDN18.2 status are crucial, especially before initiating CLDN18.2-targeted therapies.
7.Compression Neuropathy Caused by Pelvic Lymphocele after Laparoscopic Surgical Staging
Dong Jin CHAE ; Jong Bum PARK ; Mi Jin HONG ; Jungyun KIM ; Cho E. SIM ; Seung-Eun KIM ; Yung Jin LEE
Journal of Electrodiagnosis and Neuromuscular Diseases 2024;26(2):29-34
Lymphocele is a complication of pelvic surgery that infrequently leads to compressive neuropathy. We present a case of compressive obturator neuropathy resulting from lymphocele development after pelvic surgery. Electrodiagnostic studies revealed severe axonal disruption in the left obturator nerve, which is associated with poor functional recovery. This case underscores the role of electrodiagnostic testing in the diagnosis and rehabilitation of patients experiencing lower limb weakness following gynecological pelvic surgery.
8.Diagnosis of ADSSL1 Mutation-Induced Myopathy Through Electrophysiology and Genetic Tools
Dong Jin CHAE ; Yung Jin LEE ; Mi Jin HONG ; Cho E. SIM ; Seung-Eun KIM ; Jong Bum PARK
Journal of Electrodiagnosis and Neuromuscular Diseases 2024;26(2):35-39
Mutations in the adenylosuccinate synthase 1 (ADSSL1) gene, resulting in adenylosuccinate synthase deficiency, are a rare genetic anomaly characterized by muscular weakness, elevated serum creatine kinase levels, and pathological muscle findings. However, these clinical symptoms are similar to those observed in many other myopathies, increasing the risk of misdiagnosis. In an era of rapidly expanding genetic knowledge, the authors sought to verify the diagnostic utility of electromyography for genetic disorders. Through combined electrophysiological and genetic studies, a patient initially thought to have Becker’s muscular dystrophy was conclusively diagnosed with ADSSL1 mutagenic myopathy. This case underscores the importance of re-evaluating diseases that do not follow the typical clinical progression of traditional myopathies, especially in light of recent diagnostic advancements.
9.Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin
Seung-On LEE ; Sang Hoon JOO ; Jin-Young LEE ; Ah-Won KWAK ; Ki-Taek KIM ; Seung-Sik CHO ; Goo YOON ; Yung Hyun CHOI ; Jin Woo PARK ; Jung-Hyun SHIM
Biomolecules & Therapeutics 2024;32(1):104-114
Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.
10.Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage
Cheol PARK ; Hee-Jae CHA ; Hyun HWANGBO ; EunJin BANG ; Heui-Soo KIM ; Seok Joong YUN ; Sung-Kwon MOON ; Wun-Jae KIM ; Gi-Young KIM ; Seung-On LEE ; Jung-Hyun SHIM ; Yung Hyun CHOI
Biomolecules & Therapeutics 2024;32(3):329-340
Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H 2O 2). The results showed that mangiferin attenuated H 2O 2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H 2O 2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H 2O 2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

Result Analysis
Print
Save
E-mail