1.ERRATUM: Imaging follow-up strategy after endovascular treatment of intracranial aneurysms: A literature review and guideline recommendations
Yong-Hwan CHO ; Jaehyung CHOI ; Chae-Wook HUH ; Chang Hyeun KIM ; Chul Hoon CHANG ; Soon Chan KWON ; Young Woo KIM ; Seung Hun SHEEN ; Sukh Que PARK ; Jun Kyeung KO ; Sung-kon HA ; Hae Woong JEONG ; Hyen Seung KANG ;
Journal of Cerebrovascular and Endovascular Neurosurgery 2025;27(1):80-80
2.ERRATUM: Imaging follow-up strategy after endovascular treatment of intracranial aneurysms: A literature review and guideline recommendations
Yong-Hwan CHO ; Jaehyung CHOI ; Chae-Wook HUH ; Chang Hyeun KIM ; Chul Hoon CHANG ; Soon Chan KWON ; Young Woo KIM ; Seung Hun SHEEN ; Sukh Que PARK ; Jun Kyeung KO ; Sung-kon HA ; Hae Woong JEONG ; Hyen Seung KANG ;
Journal of Cerebrovascular and Endovascular Neurosurgery 2025;27(1):80-80
3.ERRATUM: Imaging follow-up strategy after endovascular treatment of intracranial aneurysms: A literature review and guideline recommendations
Yong-Hwan CHO ; Jaehyung CHOI ; Chae-Wook HUH ; Chang Hyeun KIM ; Chul Hoon CHANG ; Soon Chan KWON ; Young Woo KIM ; Seung Hun SHEEN ; Sukh Que PARK ; Jun Kyeung KO ; Sung-kon HA ; Hae Woong JEONG ; Hyen Seung KANG ;
Journal of Cerebrovascular and Endovascular Neurosurgery 2025;27(1):80-80
4.Imaging follow-up strategy after endovascular treatment of Intracranial aneurysms: A literature review and guideline recommendations
Yong-Hwan CHO ; Jaehyung CHOI ; Chae-Wook HUH ; Chang Hyeun KIM ; Chul Hoon CHANG ; Soon Chan KWON ; Young Woo KIM ; Seung Hun SHEEN ; Sukh Que PARK ; Jun Kyeung KO ; Sung-kon HA ; Hae Woong JEONG ; Hyen Seung KANG ;
Journal of Cerebrovascular and Endovascular Neurosurgery 2024;26(1):13-22
Objective:
Endovascular coil embolization is the primary treatment modality for intracranial aneurysms. However, its long-term durability remains of concern, with a considerable proportion of cases requiring aneurysm reopening and retreatment. Therefore, establishing optimal follow-up imaging protocols is necessary to ensure a durable occlusion. This study aimed to develop guidelines for follow-up imaging strategies after endovascular treatment of intracranial aneurysms.
Methods:
A committee comprising members of the Korean Neuroendovascular Society and other relevant societies was formed. A literature review and analyses of the major published guidelines were conducted to gather evidence. A panel of 40 experts convened to achieve a consensus on the recommendations using the modified Delphi method.
Results:
The panel members reached the following consensus: 1. Schedule the initial follow-up imaging within 3-6 months of treatment. 2. Noninvasive imaging modalities, such as three-dimensional time-of-flight magnetic resonance angiography (MRA) or contrast-enhanced MRA, are alternatives to digital subtraction angiography (DSA) during the first follow-up. 3. Schedule mid-term follow-up imaging at 1, 2, 4, and 6 years after the initial treatment. 4. If noninvasive imaging reveals unstable changes in the treated aneurysms, DSA should be considered. 5. Consider late-term follow-up imaging every 3–5 years for lifelong monitoring of patients with unstable changes or at high risk of recurrence.
Conclusions
The guidelines aim to provide physicians with the information to make informed decisions and provide patients with high-quality care. However, owing to a lack of specific recommendations and scientific data, these guidelines are based on expert consensus and should be considered in conjunction with individual patient characteristics and circumstances.
5.Comparative Analysis of Feasibility of the Retrograde Suction Decompression Technique for Microsurgical Treatment of Large and Giant Internal Carotid Artery Aneurysms
Sunghan KIM ; Keun Young PARK ; Joonho CHUNG ; Yong Bae KIM ; Jae Whan LEE ; Seung Kon HUH
Journal of Korean Neurosurgical Society 2021;64(5):740-750
Objective:
: Retrograde suction decompression (RSD) is an adjuvant technique used for the microsurgical treatment of large and giant internal carotid artery (ICA) aneurysms. In this study, we analyzed the efficacy and safety of the RSD technique for the treatment of large and giant ICA aneurysms relative to other conventional microsurgical techniques.
Methods:
: The aneurysms were classified into two groups depending on whether the RSD method was used (21 in the RSD group vs. 43 in the non-RSD group). Baseline characteristics, details of the surgical procedure, angiographic outcomes, clinical outcomes, and procedure-related complications of each group were reviewed retrospectively.
Results:
: There was no significant difference in the rates of complete neck-clipping between the RSD (57.1%) and non-RSD (67.4%) groups. Similarly, there was no difference in the rates of good clinical outcomes (modified Rankin Scale score, 0–2) between the RSD (85.7%) and non-RSD (81.4%) groups. Considering the initial functional status, 19 of 21 (90.5%) patients in the RSD group and 35 of 43 (81.4%) patients in the non-RSD group showed an improvement or no change in functional status, which did not reach statistical significance.
Conclusion
: In this study, the microsurgical treatment of large and giant intracranial ICA aneurysms using the RSD technique obtained competitive angiographic and clinical outcomes without increasing the risk of procedure-related complications. The RSD technique might be a useful technical option for the microsurgical treatment of large and giant intracranial ICA aneurysms.
6.Comparative Analysis of Feasibility of the Retrograde Suction Decompression Technique for Microsurgical Treatment of Large and Giant Internal Carotid Artery Aneurysms
Sunghan KIM ; Keun Young PARK ; Joonho CHUNG ; Yong Bae KIM ; Jae Whan LEE ; Seung Kon HUH
Journal of Korean Neurosurgical Society 2021;64(5):740-750
Objective:
: Retrograde suction decompression (RSD) is an adjuvant technique used for the microsurgical treatment of large and giant internal carotid artery (ICA) aneurysms. In this study, we analyzed the efficacy and safety of the RSD technique for the treatment of large and giant ICA aneurysms relative to other conventional microsurgical techniques.
Methods:
: The aneurysms were classified into two groups depending on whether the RSD method was used (21 in the RSD group vs. 43 in the non-RSD group). Baseline characteristics, details of the surgical procedure, angiographic outcomes, clinical outcomes, and procedure-related complications of each group were reviewed retrospectively.
Results:
: There was no significant difference in the rates of complete neck-clipping between the RSD (57.1%) and non-RSD (67.4%) groups. Similarly, there was no difference in the rates of good clinical outcomes (modified Rankin Scale score, 0–2) between the RSD (85.7%) and non-RSD (81.4%) groups. Considering the initial functional status, 19 of 21 (90.5%) patients in the RSD group and 35 of 43 (81.4%) patients in the non-RSD group showed an improvement or no change in functional status, which did not reach statistical significance.
Conclusion
: In this study, the microsurgical treatment of large and giant intracranial ICA aneurysms using the RSD technique obtained competitive angiographic and clinical outcomes without increasing the risk of procedure-related complications. The RSD technique might be a useful technical option for the microsurgical treatment of large and giant intracranial ICA aneurysms.
7.The Effects of Breathing Motion on DCE-MRI Images: Phantom Studies Simulating Respiratory Motion to Compare CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE.
Chang Kyung LEE ; Nieun SEO ; Bohyun KIM ; Jimi HUH ; Jeong Kon KIM ; Seung Soo LEE ; In Seong KIM ; Dominik NICKEL ; Kyung Won KIM
Korean Journal of Radiology 2017;18(2):289-298
OBJECTIVE: To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. MATERIALS AND METHODS: We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. RESULTS: With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. CONCLUSION: CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality.
Acceleration
;
Artifacts
;
Magnetic Resonance Imaging
;
Respiration*
;
Signal-To-Noise Ratio
8.Endogenous Agmatine Induced by Ischemic Preconditioning Regulates Ischemic Tolerance Following Cerebral Ischemia.
Jae Hwan KIM ; Jae Young KIM ; Jin Young JUNG ; Yong Woo LEE ; Won Taek LEE ; Seung Kon HUH ; Jong Eun LEE
Experimental Neurobiology 2017;26(6):380-389
Ischemic preconditioning (IP) is one of the most important endogenous mechanisms that protect the cells against ischemia-reperfusion (I/R) injury. However, the exact molecular mechanisms remain unclear. In this study, we showed that changes in the level of agmatine were correlated with ischemic tolerance. Changes in brain edema, infarct volume, level of agmatine, and expression of arginine decarboxylase (ADC) and nitric oxide synthases (NOS; inducible NOS [iNOS] and neural NOS [nNOS]) were analyzed during I/R injury with or without IP in the rat brain. After cerebral ischemia, brain edema and infarct volume were significantly reduced in the IP group. The level of agmatine was increased before and during ischemic injury and remained elevated in the early reperfusion phase in the IP group compared to the experimental control (EC) group. During IP, the level of plasma agmatine was increased in the early phase of IP, but that of liver agmatine was abruptly decreased. However, the level of agmatine was definitely increased in the ipsilateral and contralateral hemisphere of brain during the IP. IP also increased the expression of ADC—the enzyme responsible for the synthesis of endogenous agmatine—before, during, and after ischemic injury. In addition, ischemic injury increased endogenous ADC expression in the EC group. The expression of nNOS was reduced in the I/R injured brain in the IP group. These results suggest that endogenous increased agmatine may be a component of the ischemic tolerance response that is induced by IP. Agmatine may have a pivotal role in endogenous ischemic tolerance.
Agmatine*
;
Animals
;
Arginine
;
Brain
;
Brain Edema
;
Brain Ischemia*
;
Ischemic Preconditioning*
;
Liver
;
Neuroprotection
;
Nitric Oxide
;
Nitric Oxide Synthase
;
Plasma
;
Rats
;
Reperfusion
;
Reperfusion Injury
9.Localization and Treatment of Unruptured Paraclinoid Aneurysms: A Proton Density MRI-based Study.
Seon Jin YOON ; Na Young SHIN ; Jae Whan LEE ; Seung Kon HUH ; Keun Young PARK
Journal of Cerebrovascular and Endovascular Neurosurgery 2015;17(3):180-184
OBJECTIVE: The purpose of this study was to evaluate the usefulness of proton density magnetic resonance (PD MR) imaging for localization of paraclinoid internal carotid artery aneurysms. MATERIALS AND METHODS: From April 2014 to April 2015, 76 unruptured paraclinoid aneurysms in 66 patients were evaluated using PD MR and angiography (CT/MR angiography or digital subtraction angiography). The locations (extradural, transdural, intradural) in relation to the distal dural ring (DDR) and projection (superior, inferior/posterior, medial, lateral) of the aneurysms were assessed and compared. RESULTS: The most common location of paraclinoid aneurysms was extradural (n = 48, 63.2%), followed by intradural (n = 18, 23.7%), and transdural (n = 10, 13.2%). In the medial projection group (n = 49, 64.5%), 31 were extradural (63.3%), 5 were transdural (10.2%), and 13 were intradural (26.5%). In the inferior/posterior projection group (n = 19, 25.0%), there were 14 extradural (73.7%), 4 transdural (21.0%), and 1 intradural (5.3%). In the superior (n = 4, 5.3%)/lateral (n = 4, 5.3%) projection groups, there were 0/3 extradural (0/75.0%), 1/0 transdural (25.0/0%), and 3/1 intradural (75.0/25.0%). CONCLUSION: PD MR showed sufficient contrast difference to distinguish paraclinoid aneurysms from surrounding dural structures.
Aneurysm*
;
Angiography
;
Carotid Artery, Internal
;
Humans
;
Magnetic Resonance Imaging
;
Protons*
10.Localization and Treatment of Unruptured Paraclinoid Aneurysms: A Proton Density MRI-based Study.
Seon Jin YOON ; Na Young SHIN ; Jae Whan LEE ; Seung Kon HUH ; Keun Young PARK
Journal of Cerebrovascular and Endovascular Neurosurgery 2015;17(3):180-184
OBJECTIVE: The purpose of this study was to evaluate the usefulness of proton density magnetic resonance (PD MR) imaging for localization of paraclinoid internal carotid artery aneurysms. MATERIALS AND METHODS: From April 2014 to April 2015, 76 unruptured paraclinoid aneurysms in 66 patients were evaluated using PD MR and angiography (CT/MR angiography or digital subtraction angiography). The locations (extradural, transdural, intradural) in relation to the distal dural ring (DDR) and projection (superior, inferior/posterior, medial, lateral) of the aneurysms were assessed and compared. RESULTS: The most common location of paraclinoid aneurysms was extradural (n = 48, 63.2%), followed by intradural (n = 18, 23.7%), and transdural (n = 10, 13.2%). In the medial projection group (n = 49, 64.5%), 31 were extradural (63.3%), 5 were transdural (10.2%), and 13 were intradural (26.5%). In the inferior/posterior projection group (n = 19, 25.0%), there were 14 extradural (73.7%), 4 transdural (21.0%), and 1 intradural (5.3%). In the superior (n = 4, 5.3%)/lateral (n = 4, 5.3%) projection groups, there were 0/3 extradural (0/75.0%), 1/0 transdural (25.0/0%), and 3/1 intradural (75.0/25.0%). CONCLUSION: PD MR showed sufficient contrast difference to distinguish paraclinoid aneurysms from surrounding dural structures.
Aneurysm*
;
Angiography
;
Carotid Artery, Internal
;
Humans
;
Magnetic Resonance Imaging
;
Protons*

Result Analysis
Print
Save
E-mail