1.Diagnostic Ability and Correlation of Digital 11C-Methionine PET/CT in Primary Hyperparathyroidism with Inconclusive Standard Imaging
Hee Beom JEONG ; Yong-il KIM ; Soyoon YOON ; Dong Yun LEE ; Beom-Jun KIM ; Seung Hun LEE ; Jin-Sook RYU
Nuclear Medicine and Molecular Imaging 2025;59(1):72-78
Purpose:
11C-Methionine PET/CT is a promising method for detecting parathyroid lesions in patients with primary hyperparathyroidism (PHPT). We aimed to determine the diagnostic ability and correlation of digital 11C-Methionine PET/CT for parathyroid lesions in patients with PHPT, particularly in cases where standard imaging methods yielded inconclusive results.
Methods:
This retrospective analysis was conducted on patients diagnosed with PHPT who underwent digital 11C-Methionine PET/CT imaging because of ambiguous results on standard imaging work-up ( 99m Tc-MIBI parathyroid scan and/or neck ultrasonography). Quantitative 11C-Methionine PET/CT parameters, including maximum standardized uptake value (SUVmax), mean SUV (SUVmean), peak SUV (SUVpeak), parathyroid methionine volume (PMV), and whole methionine uptake(WMU: PMV multiplied by SUVmean) were calculated with various thresholds, and their correlations with biochemical andpathologic parameters were investigated.
Results:
This study included 22 consecutive patients (10 men and 12 women) with a median age of 64.0 years. The lesion detection rate and sensitivity of digital 11C-Methionine PET/CT were 81.8% (18/22) and 100.0% (18/18), respectively.Quantitative analysis revealed that serum PTH (r = 0.490, P = 0.039) and serum calcium (r = 0.583, P = 0.011) were signifi-cantly correlated with PMV50%.
Conclusion
Digital 11C-Methionine PET/CT offers good performance in the detection of parathyroid lesions in PHPT patients with inconclusive standard imaging work-up. The volume parameter of PMV50% significantly correlated biochemi-cal parameters and can serve as a complementary diagnostic tool.
2.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
3.Diagnostic Ability and Correlation of Digital 11C-Methionine PET/CT in Primary Hyperparathyroidism with Inconclusive Standard Imaging
Hee Beom JEONG ; Yong-il KIM ; Soyoon YOON ; Dong Yun LEE ; Beom-Jun KIM ; Seung Hun LEE ; Jin-Sook RYU
Nuclear Medicine and Molecular Imaging 2025;59(1):72-78
Purpose:
11C-Methionine PET/CT is a promising method for detecting parathyroid lesions in patients with primary hyperparathyroidism (PHPT). We aimed to determine the diagnostic ability and correlation of digital 11C-Methionine PET/CT for parathyroid lesions in patients with PHPT, particularly in cases where standard imaging methods yielded inconclusive results.
Methods:
This retrospective analysis was conducted on patients diagnosed with PHPT who underwent digital 11C-Methionine PET/CT imaging because of ambiguous results on standard imaging work-up ( 99m Tc-MIBI parathyroid scan and/or neck ultrasonography). Quantitative 11C-Methionine PET/CT parameters, including maximum standardized uptake value (SUVmax), mean SUV (SUVmean), peak SUV (SUVpeak), parathyroid methionine volume (PMV), and whole methionine uptake(WMU: PMV multiplied by SUVmean) were calculated with various thresholds, and their correlations with biochemical andpathologic parameters were investigated.
Results:
This study included 22 consecutive patients (10 men and 12 women) with a median age of 64.0 years. The lesion detection rate and sensitivity of digital 11C-Methionine PET/CT were 81.8% (18/22) and 100.0% (18/18), respectively.Quantitative analysis revealed that serum PTH (r = 0.490, P = 0.039) and serum calcium (r = 0.583, P = 0.011) were signifi-cantly correlated with PMV50%.
Conclusion
Digital 11C-Methionine PET/CT offers good performance in the detection of parathyroid lesions in PHPT patients with inconclusive standard imaging work-up. The volume parameter of PMV50% significantly correlated biochemi-cal parameters and can serve as a complementary diagnostic tool.
4.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
5.Diagnostic Ability and Correlation of Digital 11C-Methionine PET/CT in Primary Hyperparathyroidism with Inconclusive Standard Imaging
Hee Beom JEONG ; Yong-il KIM ; Soyoon YOON ; Dong Yun LEE ; Beom-Jun KIM ; Seung Hun LEE ; Jin-Sook RYU
Nuclear Medicine and Molecular Imaging 2025;59(1):72-78
Purpose:
11C-Methionine PET/CT is a promising method for detecting parathyroid lesions in patients with primary hyperparathyroidism (PHPT). We aimed to determine the diagnostic ability and correlation of digital 11C-Methionine PET/CT for parathyroid lesions in patients with PHPT, particularly in cases where standard imaging methods yielded inconclusive results.
Methods:
This retrospective analysis was conducted on patients diagnosed with PHPT who underwent digital 11C-Methionine PET/CT imaging because of ambiguous results on standard imaging work-up ( 99m Tc-MIBI parathyroid scan and/or neck ultrasonography). Quantitative 11C-Methionine PET/CT parameters, including maximum standardized uptake value (SUVmax), mean SUV (SUVmean), peak SUV (SUVpeak), parathyroid methionine volume (PMV), and whole methionine uptake(WMU: PMV multiplied by SUVmean) were calculated with various thresholds, and their correlations with biochemical andpathologic parameters were investigated.
Results:
This study included 22 consecutive patients (10 men and 12 women) with a median age of 64.0 years. The lesion detection rate and sensitivity of digital 11C-Methionine PET/CT were 81.8% (18/22) and 100.0% (18/18), respectively.Quantitative analysis revealed that serum PTH (r = 0.490, P = 0.039) and serum calcium (r = 0.583, P = 0.011) were signifi-cantly correlated with PMV50%.
Conclusion
Digital 11C-Methionine PET/CT offers good performance in the detection of parathyroid lesions in PHPT patients with inconclusive standard imaging work-up. The volume parameter of PMV50% significantly correlated biochemi-cal parameters and can serve as a complementary diagnostic tool.
6.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
7.Diagnostic Ability and Correlation of Digital 11C-Methionine PET/CT in Primary Hyperparathyroidism with Inconclusive Standard Imaging
Hee Beom JEONG ; Yong-il KIM ; Soyoon YOON ; Dong Yun LEE ; Beom-Jun KIM ; Seung Hun LEE ; Jin-Sook RYU
Nuclear Medicine and Molecular Imaging 2025;59(1):72-78
Purpose:
11C-Methionine PET/CT is a promising method for detecting parathyroid lesions in patients with primary hyperparathyroidism (PHPT). We aimed to determine the diagnostic ability and correlation of digital 11C-Methionine PET/CT for parathyroid lesions in patients with PHPT, particularly in cases where standard imaging methods yielded inconclusive results.
Methods:
This retrospective analysis was conducted on patients diagnosed with PHPT who underwent digital 11C-Methionine PET/CT imaging because of ambiguous results on standard imaging work-up ( 99m Tc-MIBI parathyroid scan and/or neck ultrasonography). Quantitative 11C-Methionine PET/CT parameters, including maximum standardized uptake value (SUVmax), mean SUV (SUVmean), peak SUV (SUVpeak), parathyroid methionine volume (PMV), and whole methionine uptake(WMU: PMV multiplied by SUVmean) were calculated with various thresholds, and their correlations with biochemical andpathologic parameters were investigated.
Results:
This study included 22 consecutive patients (10 men and 12 women) with a median age of 64.0 years. The lesion detection rate and sensitivity of digital 11C-Methionine PET/CT were 81.8% (18/22) and 100.0% (18/18), respectively.Quantitative analysis revealed that serum PTH (r = 0.490, P = 0.039) and serum calcium (r = 0.583, P = 0.011) were signifi-cantly correlated with PMV50%.
Conclusion
Digital 11C-Methionine PET/CT offers good performance in the detection of parathyroid lesions in PHPT patients with inconclusive standard imaging work-up. The volume parameter of PMV50% significantly correlated biochemi-cal parameters and can serve as a complementary diagnostic tool.
8.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
9.Diagnostic Ability and Correlation of Digital 11C-Methionine PET/CT in Primary Hyperparathyroidism with Inconclusive Standard Imaging
Hee Beom JEONG ; Yong-il KIM ; Soyoon YOON ; Dong Yun LEE ; Beom-Jun KIM ; Seung Hun LEE ; Jin-Sook RYU
Nuclear Medicine and Molecular Imaging 2025;59(1):72-78
Purpose:
11C-Methionine PET/CT is a promising method for detecting parathyroid lesions in patients with primary hyperparathyroidism (PHPT). We aimed to determine the diagnostic ability and correlation of digital 11C-Methionine PET/CT for parathyroid lesions in patients with PHPT, particularly in cases where standard imaging methods yielded inconclusive results.
Methods:
This retrospective analysis was conducted on patients diagnosed with PHPT who underwent digital 11C-Methionine PET/CT imaging because of ambiguous results on standard imaging work-up ( 99m Tc-MIBI parathyroid scan and/or neck ultrasonography). Quantitative 11C-Methionine PET/CT parameters, including maximum standardized uptake value (SUVmax), mean SUV (SUVmean), peak SUV (SUVpeak), parathyroid methionine volume (PMV), and whole methionine uptake(WMU: PMV multiplied by SUVmean) were calculated with various thresholds, and their correlations with biochemical andpathologic parameters were investigated.
Results:
This study included 22 consecutive patients (10 men and 12 women) with a median age of 64.0 years. The lesion detection rate and sensitivity of digital 11C-Methionine PET/CT were 81.8% (18/22) and 100.0% (18/18), respectively.Quantitative analysis revealed that serum PTH (r = 0.490, P = 0.039) and serum calcium (r = 0.583, P = 0.011) were signifi-cantly correlated with PMV50%.
Conclusion
Digital 11C-Methionine PET/CT offers good performance in the detection of parathyroid lesions in PHPT patients with inconclusive standard imaging work-up. The volume parameter of PMV50% significantly correlated biochemi-cal parameters and can serve as a complementary diagnostic tool.
10.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.

Result Analysis
Print
Save
E-mail